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facilties to produce new goods and to remarutfacture used
goods. He therefore might take back his used output and
remanufacture it, or to dispose of the returned used prod-
ucts. The fraction a e f0, 1l of the disposed of (not reman-
ufactured) used products'per output has been called in

[0-13] waste disposal rate and this notion will be used
here, having in mind that the rate d,.d from the per period
demand d is disposed of. This rate can be also regarded as
a (mixed) strategy combining the pure strategies of total
repair (and no waste disposal) andtotalwaste disposal (no
repair) and at the same time as a measure of ecological
(green) behavior: a low rate will contribute to the devel-
opment of cyclic production structures. On the opposite,
high waste disposal rates imply increasingly large envi-
ronmental cost to the society, and perhaps more and more
to the producers themselves.

It seems to be important to know if, and under which
conditions, the (per unit) price e for the waste disposal to
be paid by the producer is relevant to the production de-
cisions. This problem of tracing the reaction of optimal
decisions to changing ecologically relevant inputs has
been studied in I l4] for general linear programming mod-
els. Here, more concretely, the producer is assumed to
choose some production decision variable X as for in-
stance, the lot size. The related cost G(X a" e) is consid-
ered as a function of the action X, of the waste disposal
rate a and of the waste disposal price e. The producer is
supposed to minimize the function G(X, a, e), i. e. he is
interested in solving the problem G(X d" e) + minlg.r.

Two problems might be then worth studying:

(i) [ECOL+ECON]: Tracing the economical conse-
quences of ecological behavior.

For various fixed e the functions g(a" e)=minxG (X, a, e)
and the optimal solutions X(a, e) = arg min; G(X, a. e)
are to be determined. These functions show how the min-
imal cost and the optimal production variable Xreact, when
the ecological attitude d,, or, in other words, the mixed
strategy, changes.

(i i) [ECON+ECOL]: Tracing the ecological conse-
quences of economic pressure.
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Abstract. In this paper the analysis of the EOQ repair and
waste disposal model with variable setup numbers for pro-
duction and repair within some collection time interval is
continued. The cost analysis is now extended to the ex-
treme waste disposal rates and it is shown that the pure
(bang-bang) policy of either no waste disposal (total re-
pair) or no repair (total waste disposal) dominates the strat-
egy of mixing waste disposal and repair. Moreover, the dif-
ferent behavior of the minimum cost. of the optimal setup
numbers, lot sizes and collection intervals for small and
large waste disposal rates is discussed.

Zusammenfassung. In diesem Beitrag wird die Analyse
des EOQ-Reparatur- und Entsorgungsproblems mit varia-
blen Loszahlen für die Produktion und die Reparatur
innerhalb eines Sammelzeitintervalls fortgesetzt. Die
Kostenanalyse wird hier auf extreme Werte der Entsor-
gungsrate ausgedehnt und es wird gezeigt, daß die reine
(bang-bang) Politik des vollständigen Verzichts auf Ent-
sorgung (vollständige Reparatur) oder auf Reparatur (voll-
ständige Entsorgung) die Mischstrategie von Entsorgung
und Reparatur dominiert. Weiterhin wird das unterschied-
tiche Verhalten der minimalen Kosten, der optimalen Los-
zahlen, Losgrößen und Sammelzeitintervalle für geringe
und große Entsorgungsraten diskutiert.
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1. Introduction

I.l. The EOQ waste disposal model

The problem of tracing the interaction between economic
and ecological factors to production is here discussed for
the following simplified situadon: Let a producer have the
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The function cr (e) = atg mino I (a, e) explains how a
cost minimizer determines his ecological attitude a with
respect to changing waste disposal prices. This economi-
cally optimal strategy is either pure or mixed, i. e. a(e) e
{0} v { 1} u (0, l). From the "green" point of view per-
haps the optimality of q,(e) ( I is preferred.

Both problems will be regarded here for the case of the
deterministic two stage economic order quantity-problem
ttO-l3J modeling the production of new and the repair of
used products as for instance, containers (comp. [7]), in a
first shop and the employment of the products in a second
shop. The used products can either be stored at the second
shop and then be brought back at the end of the collection
interval [0, fl to the first shop for repair, or be disposed
of somewhere outside. In the first shop lot sizes of newly
manufactured products and of repairable products have to
be determined in order to meet a constant demand rate of
the second shop. Some of the used products are collected
at the second shop according to a not necessarily unique

^ repair rate.The share of the products not provided for re-
pair is again called waste disposal rate. In the model not
only the demand for new or repaired products is assumed
to be deterministic, but also the return flow of used prod-
ucts, the stochastic nature of which has been studied ex-
tensively in [8, 9], is deterministic and can be controlled
by the producer. On one hand, this restriction narrows, of
course, the practicability of the approach. On the other
hand, the explicit results and properties provided in the
paper, perhaps, can be only obtained for restricted prob-
lems.

The lot size x,the setup number m of repair lots and the
setup number n of production lots within the variable col-
Iection intenal make the decision variable X of the pro-
ducer. His per time unit cost function G (x, m, n, a) con-
sists of a sum of two different functions G(x, m, n, d,) =
K(x, m, n, d,)+ R(o" e) which is to be minimized. The first
function K(x, m, n, d) covers the cost factors which are
related to the traditional EOQ-framework. The other func-
tion R (a" e) arises outside the EOQ-framework and in-
cludes the additional linear repair, production and espe-
cially the waste disposal co.rt associated with e, in other^ 
words, the non-EOQ-related cost.

The problem [ECOL-+.FCON] reduces now for the
EOQ repair and waste disposal problem to the determina-
tion of the optimal x, m, n for given a, Since the function
R(a" e) does not depend on these variables, the function
K(x, m, n, d) is to be minimized. In [12] this problem has
been solved by a two-stage method, first by finding the op-
timal lot size x (rn, n, a) and then, after replacing x in K (x,
m, n, d,),by determining the optimal set up numbers m(a)
and n(a). Then, using the notation x(a) = x(m (a), n(a),
a) the decision variables X(o, e) = {x(a), m(a),n(a)l
show the reaction to changes of a. Similarly, the function
s(u el can be transformed into s@, e) = K(a) + R(o" e)
with K(d) = K(x(a), m(a), n(a)).

This function g (o" e) has been proved to be convex for
smaller waste disposal rates and concave for the variable
ainll2l if the setup numbers are not necessarily integers.
Here this analysis is continued by exploring the reasons
for these properties. Furthermore it will be shown, that -
if it is technologically feasible - the problem [ECON +
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ECOL] has an extreme solution: the cost minimal waste
disposal rate is always a* = 0v l. i . e. either no waste dis-
posal (total repair) or no repair (total waste disposal) is op-
timal. At the end the different behavior of the optimal setup
numbers, lot sizes and collection intervals for small and
large waste disposal rates is analyzed.

The problem of the interaction of economic and eco-
logical factors has found some attention in last years. Gen-
eral ideas of modeling these problems are provided in [2-4,
l4l. More practical oriented are the mainly stochastic mod-
els studied in [, 6-9]. The problems of the environmen-
tal management are discussed informally in [5, 15] and
many other papers. The EOQ repair and waste disposal
model has been introduced by the author in [l0] and ex-
tended in F 1-131.

In the next Sect. 1.2. the model is described formally.
In Sect. 2, firstly the analysis of an auxiliary problem in-
troduced in [12] is continued, secondly the structure of the
optimal setup numbers is given and thirdly some explana-
tion is provided for the existence of regions of different
(convex-concave) behavior of the minimum cost. It will
be seen, that on one hand, this behavior depends on the re-
lationship between the repair rate, the waste disposal rate,
the total repair minimum cost (cz = 0) and total waste dis-
posal minimum cost (a = I ). On the other hand, these re-
gions are related to the (cost oriented) preference of repair
to disposal, or disposal to repair. This preference relation
is changing, if the model inputs change. In the third sec-
tion the optimality of the pure strategies is proved. In the
fourth section the properties of the other parameters of the
problem are described. The paper ends with some conclu-
sions.

1.2. The formal description of the EOQ repair
and waste model

The model is based on the following assumptions: A first
shop is providing a homogeneous product used by a sec-
ond shop at a constant demand rate of d items per time
unit. The first shop is manufacturing new products and it
is also repairing products used by the second shop.

The repaired. products are then regarded as new. The
products are employed by the second shop and collected
there according to a repair rate p. The other products are
immediately disposed as waste outside according to the
waste disposal rate d, = I - F. At the end of some variable
time interval [0, f] the collected products are broughtback
to the first shop and will be stored as long as necessary and
then repaired. If the repaired products are finished the man-
ufacturing process starts to cover the remaining demand
for the time interval.

The processes of manufacturing, repairing and using
the products are supposed to be instantaneous. The inven-
tory stocks occurring in this system are illustrated by
Fig. 1. Note that in the case of m > I additional stocks of
used products not displayed in the figure occur in the first
shop.

The following cost inputs will be used: The repair setup
cost r > 0, the production setup cost r > 0, the per unit
cosVprices b, k > 0, and e e (-*,a".) for manufacturing,
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Before discussing the general problem the pure situa-
tions of no waste disposal (total repair) and no repair (to-
tal disposal) will be considered shortly:
(i) If no product will be disposed of, all of them must be
collected and repaired. Then every product will be stored
twice, as a repaired product and as a used product. The
per t ime uni t  cost  is  then given by K(x,  1,0,0)=f lv l1s
+ (h + u) x/2, and the total repair minimum cost is Ks =
l/ 2dr(h+a). With the additional repair cost a cost expres-
sion

g ( 0 , e ) - K o + d k  ( 4 )

occurs. (ii) If no product is repaired the situation appears
which is usually treated in the literature. The per time unit
cost is K(x,0, l, l)=dtl*+h*/2 and the total disposal
minimum cost is Kr = ! 2ds h. With the additional man-
ufacturing and waste disposal cost the expression

g (1,  e)  = Kr *  d (b+e) is found. (5)

2. The optimal solution for the EOQ repair
and waste disposal model

2.1 . Introducing the auxiliary problem

The auxiliary problem, studied below, has been introduced
in [12]. It helps to understand the structure of the solution
of the original problem. Therefore it is discussed here once
more. If the cbst function K (x, m, n,d), which is obvi-
ously convex and differentiable in x, is to be minimized in
x > 0 for fixed m, n 21 and a, then the cost minimal lot
sizes x (m, n, d,) can be derived from öKldx = 0. Then

2Aair + ns\
x.(m, n, a) = ^ # and the minimal cost is

\  I 7 ( m , n , a )

K(m,  n ,  d )  -  ^ .2d(mr  +  ns)  H(m,  n ,  d ) .  (6 )

Now the optimal m (a) and n (a) for tn, n ) I and the
value K (a) = K(m(a), n (a),a) have to be found. Instead
of the function (6) however the function

S(m, n,  a)  = (mr + ns)
. ( ( o ' t n +  p 2  t m ) h +  F u +  p 2 u ( m - l ) l m ) ,  Q )

can be analysed. For both functions the relationship

K(m, n, d) - ^, 2d. S (m, n, a)

repalr: selap

cosl r, per unil

cost k

ruaste disposal with per wtit cosl e

Fig. l. Cost inputs and inventory stocks for the setup numbers rn = I
a n d n = 3

repairing and disposing products and the per unit per time
unit holdin-q cost h, u > 0 at first and second shop. respec-
tively. The notations of the waste disposal rate and repair
rate d, F, a *F = l, 0 <a" P < 1, of the demand rate d>0,
of the length 7'of the collection interval, of the lot size
x = dT of the collection interval and of the setup nutnbers
n, m e 11,2,.., ) for production and repair are applied to
formulate the models. If these variables are fixed then rhe
demand of the second shop is satisfied by repairing
F* = BdT units in m lots of size Bx/m and by producing
cx units of new items in n lots of size ux/n.

First, only the EOQ-related setup cost and the holding
cost parameters are considered. Then the over all cost for
a collection interval [0, I] is

/  ' t  1 '  n )  t \

K,  -  (n t r+ns)  *  h [  o t ' t t  *  F"  * '  
I  za  *  upTx /  Z" 1 .  

n  m  )
+up2x2(m-r ) /zdm,

where the fixed cost (rn r + ns), the holding cost h (d x2/n
+p2 x2/m1/2d for new and repaired products and the hold-
ing cost uBTxl7 + uB'x'(m-l)lLdm for used products in
the second and first shop, respectively, are included. The
per time unit cost is then

K(-r ,  m. n,  a)  = K, /  T = d(mr + ns) /x

+  
| t < a 2  

t n +  B z  / m ) h  ( 1 )

+ u p + u B z ( m - t ) / m l ,

with Il (rn, n. a) = (*/n+ fftm1 h+u B+u F @-t)/m as to-
tal per time unit per unit holding cost.

Let now the non-EOQ-related cost inputs be included.
The sum of linear manufacturing cost. waste disposal
cost and repair cost per time unit is given by the function
R (cr, e) with

R (a,  e)  = d (a (b+e) + ( l -a)  k)  = d(u (b+e-k) + k) .  (2)

Hence the overall per time unit cost is

G (x, m, n, d) = K (x, m, n, d) + R (a, e), (3)

and the corresponding optimal lot sizes, setup numbers and
waste disposal rate have to be determined.

holds. The parameters in the function (7) can be replaced by

A= rha ,2 ,  B  =  s (h -u )pz ,  C  =  ru (F+  92) ,
D = s u ( F + F z ) ,  E = s h a z + r ( h - u ) F '  

( 9 )

and the function

S ( m , n ) =  A U +  B L + C m *  D n *  E ,
n m

appears, where the parameters (9) fulfill

A , C , D , B + D , E > 0 .

(8)

(10 )

( 1 1 )

Let the parameters A, B, C, D, E be arbitrary real num-
bers, i. e. the restriction ( I 1) associated with the inputs of
the original problem, is left. The auxiliary problem of min-
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imizing this continuous (nonconvex) function (10)

S (nt, n) -+ min, (m, n) e R = l(m, n): (m, n) ) I ), (12)

i. e. the problem of finding an oprimal Qn, n) is studied be-
low. The problem is called solvable, if there exists an op-
timal solution. For negative inputs C or D, for instance,
the problem is not solvable.

2.2. The properties of the auxiliary
and the original problems

The problem (12) has been solved in [12] for the assump-
tion (11). It is easy to see thar the Theorem provided be-
low holds for all real inputs. The formulae appear due to
the properties (comp. tlOl) that the oprimal solutions are
on the l ine n= I  i f  B > Aand on m = |  i f  B <Ä and that
the function S (.m, n) is convex on these lines. In other

__ words, the objective function is monotonously increasing
in the first.case in n, and in the second case in m.

Theorem l. If the problem ( 12) is solvable there are tlzree
cases of optimal solutions (rn, n) and minimum cost ex-

f  * 1 3
pressions t.: ttJ I,=rfo, the function QA):

( i )  B > A + C +  ( m * , n * )' /
' t p \ -

= |  -= ^ ,1 l ,  S i  = 2 . , .  B(A+ C)+ D+ E,( \  A + . -  )
( i i )  A -  D  <  B  <  A  +  C  +  (m* ,  n * )

- ( 1 ,  1 ) ,  S ä = A + B + C + D + E  ( 1 3 )

(i i i )  A > B + D + (m*, n*)
( Ä \=  |  |  - - -  I '  S s  - 2 ^ . A ( B + D ) + C + E .
[ ^ ' \  B - r u , /

Remarks. I ) The structure of the oprimal solution and of
the minimum value for the problem (12) is symmetrical
with respect to the cases (i) and (iii), i. e. if A and B, and

' C and D, respectively, are replaced one by the other, then
^ case (i) turns to case (iii), and vice versa.

2) The optimal solutions do not depend on rhe inputs D
and E in case (i) and on the inputs C and E in case (iii).
These inputs occur as constants in the expressions for the
minimum value.
3) The conditions of (i) and (iii) rurn rhe objective func-
tion (10) up in the direction of rising m andr?, respectively.

The application of Theorem 1 provides the foflowing
properties of the optimal solution and the minimal values
of the original problem:

Theorem 2 (Richter [2]): For the function (7) the opti-
mal solution (m (a), n (a)), the lot size x (a) and the min-
imal value K (a) = lKi(a) li=r for 0 < d, < 1 are given b1.

( i )  { h ,  " }  " {F "&-u )>  r (a?n  +  Fu t r  +B1 ; }
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and _ ,  
@ )Kt@)  =  " .2d  

[ f  .  t  (h  -  u )  *  r ,  s (d '

rha2 - suB S shBz . r(attt + F u(l + B)) + usp2

* (m(a) ,  n  (a))  = (1,  1) ,

and  Kz@)-  ̂ .Zd ( r+s )  (h (a2+  F2)+  Fu)

(ä1) a2 rh > sp (ph + u) + m(a) = l,

n ( a ) = a - - ; . # ,  x ( a ) -  = , ? ! '  , ,
,  sp (ph*u ) '  \  B@h*u ) '

Kz@) = '. zd(a^"/, + ̂ ,;Fegh. r))

Proof: Let only the case (iii) be shortly explained. Due to
the case (iii) from Theorem I and formula (8)

(Kz !Q) t  -2 .  41sq p1  +  c  +  E
2d

= 2. ,  rho'  ( r (h -  r )  p '  *  ruB(I-  p))  + ruBQ+ B)

+sha2 + r(h - ü p2 = Zr rno' rp(W * u) + sha2
. . ,

+rBQp * tt) =(", tna2 + ̂  rp1np + u)- notAr. tr
\ , /

Remark. The proof makes clear that the parameters A,. . . , E
are related in such a way that the minimum cost separates
into two independent values in the cases (i) and (iii), re-
spectively, which can be treated as minimum cost for some
special EOQ-models.

According to [12] the function K(a) is continuously
differentiable and the conditions (i) - (iii) divide the inter-
val (0, 1) of the waste disposal rates into three regions
(0, drl,t(at, (h),lur,, l) with different behavior of the cost
functions Ki(g).While under the realistic assumption of
4 h (h+u)) u" the function is convex in the second region,
it is always convex in the first and concave in the third
one. In terms of the problem (l) - (3) the function g(a, e)
is then provided by gi(oC e) = Ki(a) + d (a (b + e) +
( l -q)  k) ,  i  = I ,2,  3,  and i t  is  obviously also convex-con-
cave. As an example, such a function and the reaction of
the setup number n (a) to a. are illustrated in Fig. 2. The

(ii)

( l+1

210

+ m(d,) - B
s ( h - u )

1r (azh+  Fu ( r+  h )

x(a \=  |  =  Zds

\  a ' h +  F u ( I +  F )

n ( d )  -  l ,

Fig. 2.Thefunctions g (cq, e)andn (a)fors = 140, r = 100, h = lO,
u = 4 ,  d = 5 , / i  =  1 0 ,  e + b =  2 0 w i t h  a ,  = 0 . 0 7 7  a n d a n  = 0 . 6 3 1
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values for m(a) are here near one, therefore they are not
presented graphically.

Remark. Since the waste disposal rate a appears only in
A, while due to the holding of used products the repair rate
p is present in the other parameters, the inputs A, B. C, D
in (9) are nonsymmetrical with respect to a and the struc-
ture of the optimal solution and of the minimum cost is ob-
viously not symmetrical as in the case of the auxiliary prob-
lem (12) .

It will be seen in Lemma 4 of Sect. 4 that the situation
of the cases (1) m (a) > l, n (a) = I and (ä1) m (a) = l, n (a)

> I can be treated as a (cost oriented) preference of repair
to disposal and of disposal to repair, respectively. In other
words, such preferences occur if d,
d 2 < a .  I f  n ( a ) = l  a n d  m ( a ) 2 1  ,  o r  m ( a ) =  I  a n d
n(a)21, respect ively,  i .e.  i f  a< e2or d,12&, then i t  makes
sense to speak of weak preference of repair to disposal
(or disposal to repair).

2.3. Interpretation of the properties of the minimum
cost function

2.3.1. The appearance of regions of dffirent behavion
Now the results of Theorem 2 will be discussed in great-
er detail:
a) lf u = 0 then the three cases of Theorem 2 reduce to

( i )  F 2 r 2 a 2 r =  m ( d ) = 4 ,  t ,  n ( . a ) - l .
a \ . r

( i i )  F2s 1r-2r = nt(a) = l ,  n(a) = I  i
0 t , t '

The minimum cost is K(a) - ^,1dh(o'. i + B.,7) in uottr

the cases. The three sets of waste disposal rates appear

with a1 - d2 = +. The setup number n equals one,
f i  S+ t '  f

or, in other words, repair is preferred weakly to disposal,
if and onlv if

holds. The left-hand side expresses the ratio of repaired
products to disposed products, called here the repaired
product quantity ratio. The right-hand side gives the ratio
of the total repair minimum cost Ko to the total disposal
minimum cost K1 , called the repair minimum cost ratio.
Hence, repair is weakly preferred to disposal, if and only
if the repaired product quantity ratio is not less than the
repair minimum cost ratio. If to look at objective function
from a geometrical point of view, condition (15) turns the
function up in the direction of rising n.

The minimum cost appears as the linear combination
of the total repair minimum cost and of the total disposal
minimum cost and therefore is a linear function of a- If
every value a e [0, l] is feasible. the optimal waste dis-
posal rate is determined by that a* which minimizes

8(a ,e)=  K(a)+  R(a ,e)

= ",zan(a. i  + P' ,V) + dta(b + e - f t )  + f t ) .

r27

It is then clear that a* = 0 if

"rdi; + dk < 2At1s + d(b+e) and a,* =l

in the opposite case.
b) Let the more complicated case h2 u > 0 be considered.
It is easy to see that the inequality B>A is, in terms of (9)'

equal to

F2s (h-u) > r  d.  (16)

This inequality is always fulfilled for sufficiently small
values ola (and large p) and it implies that n = l. This in-
equality covers the two sets [0, a1] and lav ul- The fol-
lowing Lemma, which can be proved elementary, trans-
forms the inequality (16) into such arelation which can
be treated in economic terms.

Lemma l. Let h > u > 0 be fitlfilled. Then the inequaliry
(16) holds if and only if

P-  ^ , - rn  ( -  ^  Ks )  - - . . ' . ' ^ -  h! -  )> - - -  t  = P' ;  i  wl tn p 3 - -
cYV \'s(ft - rl I Kt ) ,, h2 -u2

The inequality (17) can be treated in the following way:
While the repaired product quantity ratio is on the left hand
side, the right-hand side.covers the repair minimum cost
ratio, corrected by the parameter p> l. This parameter ex-
presses the relationship between the two holding cost in-
puts and it is a monotonically increasing function of r.

Henc", repair is weakly preferred to disposal if and only
if the repäired product quantity ratio is not less than the
corrected repair minimum cost ratio

Using similar arguments we can show that disposal is
weakly preferred to repair if and only if the repaired prod-
uct quantity ratio is not greater than the (corrected) repair
minimum cost ratio.
c) The case ,, 2 /r is not so much of interest, since only the
solutions of type (ii) and (iii) occur in Theorem 2, and, dis-
posal is always weakly preferred to repair.

2.3.2. The convex'concave behavior of the minimum cost.
Now, the problem of the different behavior of the mini-
mum cost function at the different regions will be dis-
cussed. Due to the remark to Theorem2 the minimal val-

ue of the K* is in the cases (i) and (iii) separated into two
independent parts of minimum cost for special problems
with setup numbers to be equal one.

(i) The minimum .ostj: :geul thlsum of the independent

minimum cost R=\ ZdrBl(h-u) of repairing and stor-

ing the fraction F*n,-rn = ^.Td'l(h-o)' with the hold-

i@ und of the minimum cost P=

12ds(a2h + Fu(l+ F)) of producing and storing the frac-

tion ax(a) of new products and storing also the used prod-
ucts. As it can be seen the holding cost a subtracted in the
first expression is then added in the second one, and due
to (14) 

-Bx(a) 
).r3. Since the function P is convex. this is

true also for Kt(a).
(iii) The minimum cost is .q3lg: tl*jf the indepen-

dent minimum cost ft = -. 2d r B (.hB + u1 of repairing

and storing the fraction p.r(a) and the minimum cost
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p - -...2d;h"= of producing and storin-s the fractio n d xp,

.rp = .. 2dt / h. Obviously, the relation ax(a) > xp holds.

No\Ä', the function R is concave and so does K3(a).
It follows from those properties, that the marginal min-

imum cost as a function of a increases up to oa2 and falls
behind. In other words, the marginal cost increases with
decreasing degree of weak preference of repair to dispo-
sal, and decreases with increasing preference of disposal
to repair.

3. Comparison of mixed and extreme waste
disposal rates

Now the convexity of the cost function Kz@) is assumed.

Lemma 2. The relation g (a, e) ) min {rK3 (0) + dk,
Ks( l )+d(b +e) l  for  0 < a< I  is  fuf f i I led.

- )roof. The function g(4, e) is convex for 0 S a< a, unä
coincides at a> oa with the function K3(a)+ R(o" e), which
is concave on the whole interval [0, l].Then, due to the
continuous differentiability of K(a) and g(a, e), the rela-
tion g(cq e)2 Kz@) + R(a" e) for O <a< I holds and g(q, e)
is bounded from below by the minimum of K:(0)+ dk and
K{l)+d(b+e).  n

Theorem 3. One of the pure strategies of total repair (no
waste disposal) or of total disposal (no repair) is optimal,
i .  e .  g (u  e12 min  {g (0 ,  e )  g (1 ,  e ) l  i s  t rue .

Proof. The analysis of the function Kr(a) for a = 0 v I

shows that K3(0) = Ko = - 2dr(h+u) and that K, (1) =

Kt = \tr4;11. Then it follows from the previous Lemma
that no mixed strategy can be better than one of the pure
solutions. 

-1�

Rennrk. In the case of linear holding, repair, production
and waste disposal cost and of free choice of the waste dis-
posal rate between 0 and I one of the pure strategies to re-

--*tair or to dispose of all used products is optimal. Probably
,reS€ pure strategies are technologically not feasible and

there will always exist some unrepairable used products
which are to be disposed of. In this case mixed strategies
for the problems [ECOL-+ECON] and IECON+ECOL]
seem to have practical relevance.

The optimal pure strategy can be simply found by com-
paring the values of Ko + dk and Kr + d(b+e): \:put1t
(strongly) preferred to disposal, if and only ".. r(h + u)

< (e + b - k) .-d /2 + ", rA notas. If the waste disposal cost

e drops down the preference shifts to the disposal option.
In the example considered in the section 2.2. S (0, e)

= 168.322 and g (1, e) - 218.322 hold, while the minimal
value for mixed strategies is above 200. Thus, the repair
option would be preferred in the example.
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4. The changes of setup numbers, lot sizes
and collection intervals

If r > 0 and the formulae from Theorem 2 are combined
the following results can be easily obtained for the repair
and manufacturing lot sizes.

Lemma 3. The repair setup number fulfills nr(a) 3
( .  sg l - r ' ,  t

nwx | 1,. - l, i.r. it is bounded by a constu,xt, while
\ \  r u  )

the productiotx setup number beconzes infinitely large with
increasing waste disposal rate, i. e.

n ( a \' ! \ 6 /  -  
" , 1 - d  \  s ( / z  + u ) '

Rentark. The setup numbers show conflicting behavior:
The changes in the relation s/r affects the bounds differ-
ently. i. e. one bound will rise and the other will fall, while
changes in h/u produce the same effects for both the
bounds.

The lot size x(a) and the length T(a) of the collection
interval behave similarly: While x(d) has obviously an
upper bound for a1 er, it is unbounded for

a )  d z :  x ( a ) u  ^  
2 d '

\  ( l  - a - ) ( h * u ) '

where the lower bound might become infinitely large. Be-
cause of x(a)/d = T(d) the same relations are true for the
length of the collection interval.

In the model, however, not the lot sizes x(a) are used,
but a certain number of repair lots and a certain number
of manufacturing lots. Their size is estimated by the fol-
lowing

Lemma 4. (i) Let a S dr. Tlzen Fx (a) units of used prod-
ucts are repaired in m(a) Iots of the size \/ 2rdl(h-u) and
one lot of size ax(a) < 1/ 2d s/h is newly manufactnred.

(ii) If a ) a> then ax (a) unitsgf13gv, products are nxan-
ufacrured iU(a)_lq!q of size \/Tsd/h and one lot of size

Fx(a) < \/Zdrl(h-u) is repaired.

The sizes of all repair and manufacturing lots are bounded,
and only their number might change and even become in-
finitely large. Therefore in the case (i), when many lots of
used products are repaired and only one lot is produced
newly and the appropriate quantity is disposed of, it makes
sense to speak on a preference of repair to disposal, and in
the case (iii), when the opposite situation occurs, to speak
on the opposite preference relation. For a given a it is not
clear, if it is preferable or not. Perhaps, one wants it to be
as small as possible. The discussed relation of repair lots
to production lots gives some new insight, and at the same
time a new (cost oriented) criterion for estimating the re-
lation between repair and disposal.

Finally, it should be noted that, if the waste disposal
rate tends to one, some discontinuous situation occurs:
The infinitely large collection interval T(a) and the infi-
nitely large manufacturing setup number n (e) gcllspse to
the values of the traditional model T(l) = l/2s/dh and
n ( l )  =  l ,  m ( l )  =  0 .
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5. Conclusion

The main result of the paper on the optimality of the pure
strategies of total disposal or total repair is also true, if the
lot size number are integers. Although the objective func-
tion is then not convex-concave as in the continuous case,
the function g (q e) is a lower bound for the integral func-
tion g1 (q e) and hence Theorem 3 holds again. The inte-
gial problem is, however, not trivial and it will be subject
of another study.
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