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1. The Stability Problem for the Dynamic Lot Size Model

1.1. The Stability Research for the Dynamic Lot Size Model

The dynamic lot size model [13] has been studied in several pap#rs bfst author and
other researchers [5-12] to answer the question for which cost inpuptianal solutions
remains valid. First, stability regions, i. e. sets of cost infastsvhich a solution is optimal,
were determined by using the dynamic programming solution process. [GFqE§ize of the
stability region can be regarded as a measure of the robustre=sssidns and a high value is
economically favorable. An efficient algorithm for the generatiorswth regions has been
discussed in [5]. The regions found in [6-11], however, covered only subséts sthbility
region. Later a complete analytic expression for the stabdgions has been found in [3,11]
by the application of the properties of the minimal inventory cost ffpmin [11] first
attempts have been also made to analyse the behavior of theystagibnfor growing time
horizonst, in other words, for growing planning intervals covering the pero2s..,t In this
paper the analysis will be continued and several results from [11] will be geedrali

This analysis is motivated by the following observation: Planning aretdst horizons [1]
provide an optimal time horizon in dynamic lot size models becaus#ptimeal decision for
the planning horizon is part of a long run optimal decision. The cost paeused in the
models are certainly approximate and their final values mighiiffexent. If the final values
belong to the stability region this difference will not afféet bptimality of decisions. A large
size of the stability region is therefore obviously favorable. Tharmphg horizon as the best
time horizon for a model has, however, not necessarily the latgbgitg region as it will be
shown later. With this respect other periods might serve bettenasorizons. Hence, the
determination of the time horizon can be regarded as a problem @thwb criteria
"optimality” and "stability”, and it is worth checking the behavior of the stalvéigyons.

Since with growing time horizons of a model optimal decisions depend mtr@asing num-
ber of inputs the stability regions should certainly shrink. Let thatiootS(m,n)be used for
stability regions of an optimal solution for the periodsn+1,...,n.Then the relations

S(m,n)7S(r,t)), S(m,ny7S(m,r-1)» S(r,n) or S(m,n) = S(m,r-1y S(r,n)
for 1<m=<r <t <n are expected to haldhe stability region of an optimal solution for the

periods m,m+1,...,nis then a subset of the regions for solutions which are optimal for
m,m+1,...,r-1and forr,r+1,...,n ,respectively.  In an extreme case it might coincide with the



1) The inclusion symbol covers in this paper the case of identical sets

intersection of regions. Then the tightest bounds of the regions for these two subproblems
determine the bounds of the stability region for the original problem. Such pairs

of sets S(m,n)and S(r,t) are called monotonous and the tripleS(m,n), S(m,r-1), S(r,n)
will be calledmonotonousandstrictly monotonousiespectively. The paper will aim at sear-
ching such (strictly) monotonous pairs and triples.

It has been found (comp. [11]) that generally with an increasing hionzon the stability
regions might not shrink and monotonous pairs will not exist. The sufficient ioredior the
identification of monotonous and strictly monotonous pairs and triples ftafréquire the
existence of ordinary planning horizons.

In this paper some more efforts are made to analyse this sedjmttavior of the stability
regions. First, the regions are also shown to be shrinking if Emqablnning and forecast
horizons exist and the time horizon of the initial problem exceeddotieeast horizon.

Secondly, the conditions for the identification of (strictly) monotonoydesr are also ge-
neralized to the case of planning and forecast horizons. Thirdly, theeree of strictly

monotonous triples is proved for the case that a certain stalefligf she ordinary planning
horizon is sufficiently large. Hence, monotonous and strictly monotongqisstean be found
under more general conditions than in [11], new interpretations of the enffaonditions are
presented and some more counterexamples illustrate the conditions used in thasassert

1.2. The Model and its Solution

The one-product dynamic lot size model covering a planning intervalpeiibds1,2,...,n,
wheren is also called time horizon of the model, consists in determinitier sariables¢
and inventory variableg for one product and all periotts1,2,...,n.When ordering a nonzero
amount the setup costappears. Storing one item for one period chaigits. Under the as-
sumptions that end period inventory is regarded, the dewhand of every period is to be
satisfied, the stock of that product is zero before and after theiptainterval, and planning
interval cost is to be minimized, many authors gave the following model:

Nonnegativity of the variables: x>0, 4 =0, t=1,2,...,n. Q)

Zero stock before and after the planning intervalg = yn = 0. (2)

Demand satisfactiony; = yi-1 + Xt - ¢, t=1,2,...,n. 3)
n

Cost minimization: 2'(s sign x+ hy) - min. 4)
t=1



The model will be denoted Y and if the first and last period are significant B(m,n)
with the first periodn and the last period >m.

In this paper the techniques used to determine an optimal solution farothed (1) - (4) do
not play the major role. It will be assumed that optimal soluti@mshe found by dynamic
programmming procedures based on the recursion of the type

ft= ci@t + figt)-1 = min { Gt + fi-1: 1 si <t} fg = 0, (5)

with ft as minimal cost for the firdtperiods andj; as sum of the setup cost at peri@ihd

of the holding cost for the periodst+l,...,t. The periodd(t) which cover the last setup for
every time horizont are called regenerations points and the relathx’i(t+1) has been pro-
ved by many authors. it) is not unique the largest value will be used. Because of this rule
always exactly one optimal solution will be generated, although thayeexist more than one
optimal solution. The recursion (5) and the properties of regeneratiors poetiscusseded

in many standard textbooks of Operations Research and Production Plaxommg [5]). In

the last years more efficient algorithms for the dynamiciceé model have been developed
(comp. [12]).

The case ofi(r)=r is of special interest, since it splits the probléafl,n) into two
independent subprobleniM(1,r-1) and M(r,n), if n > r. The periodr-1 is called(ordinary)
planning horizon in the lot size literature, since the next perfodill be always a setup
period, no matter which time horizon>r is regarded. More generally, a period. is called
planning horizon for the forecast horizonit, r is setup period in every optimal solution for
all models with a time horizom>t (comp. [1]).

Since a feasible solution is uniquely determined by the order vadugbe symbok will be
used to denote feasible or optimal solutions. If the starting and elodgare significant, the
notationx(m,n)will denote optimal solutions foM(m,n) A solution is also characterized by
the periods in which the goods are ordered. These periods aresedilpgeriods.

1.3. Stability Regions

If an optimal solutiorx is found, it is of interest to know for which parameteand h it will
remain valid. Such a set will be calledability region Since the cost inputs can be
normalized by dividing both parameters by the vilaaly the stability regioi® for the setup
cost input is to be discussed in this and the next sections.

One approach to determine the Setonsists in the following idea (comp. [2]): Let solutions
with a fixed number of setugsbe introduced and |&t(n,k) be the minimal inventory cost for

2



the casdi=1 in a model wit periods andk setups. How such values can be found is at the
moment of no interest. The problem of determining an optimal solutihremsalso provided

by

sk + H(n,k) - min, (6)
1<ks=n. (7

The optimal numbek(s), which may be not unique for a problem, provides the number of set-
ups of an optimal solution. S8is characterized in the next theorem.

Theorem 1 ([3, 11]): The (setup cost) stability region of an optimal solutiortherdynamic
lot size model is provided by the following interval

S[B = s =H(nk(S)) - H(n,k(s)+1)x s sst = H(n,k(s)-1) - H(n,k(s)) (8)
where one of the bounds might not exist.
The relation (8) provides a typical marginal property: The setupimqmst can vary within the
range of the differences in the minimal inventory cost occurirtbefnumber of setups is
changed by one.
Example 1: Len=3,d = (3,2,1) s=2.5 andh=1. The optimal solution for this problem is
x = (3, 3, 0)andk(2.5) = 2, H(3,2) = 1.ThenH(3,1) = 4,since one setup only implies the de-
mand of the period2 and3 to be ordered at the first period, ad(B,3) = 0. It follows then
thatS(1,3)is provided by

s=1=1-0sss41=s" =3 = S(1,3)=[1,3].

The stability region can also be found explicitly: For the optisoélition the total cost should
satisfy

2S+1<3s, 2s+1<ss+4, 2s+1<2s+2 = 1<s<3.

As a consequence of the relation K8) can be covered by a finite number of stability regions
which correspond to certain optimal solutions. Tab. 1 illustrates this property foplexam

Tab. 1 about here



Remark: The model introduced in section 1.2. is given for positive demand. The same
stability results can also be obtained for nonnegative demand values.ibweever, either

the recursion (5) and the minimal inventory ddén,k) have to be redefined, or zero demand
values have to be replaced by sufficiently sraalbetails of such a solution approach will not

be discussed here.

Let two other examples be considered:

Example 2. Letn=6, d = (3,2,1,2,2,3)and s=2.5. Then the optimal solution i =
(3,3,0,4,0,3)and S(1,6) =[2,3].

Example 3: Len=3, d = (2,2,3)ands=2.5 i. e. the last three periods of the example 2 are re-
garded Then the optimal solution is= (4,0,3)and S(4,6) = [2,6].

It follows from the previous examples th&(1,3)» S(4,6) = [1,3] n [2,6] = [2,3] = S(1,6)
holds. Whether such a relation is true in general will be the point of the next section.

2. Sequential Stability
2.1. More Definitions and Examples

When the time horizon is growing a series of stability regiowsagppropriate optimal soluti-
ons arises. As it was pointed out in section 1.1. a pair of stalejtgnsS(r,t), S(m,npf op-
timal solutions for dynamic lot size modei4(r,t) and M(m,n), m<r < t <n s called
monotonousdf the subsequent region is a subset of the previous set. A triplstadfility
regions associated with the periogdsesr <n is calledmonotonousif

S(m,n)7S(m,r-1)n S(r,n)
holds andstrictly monotonousf

S(m,n) =S(m,r-1)n S(r,n)
is fulfilled. If there is a strictly monotonous triple the stability regifm,n)coincides with the
intersection of regions for two subsequent subprobl&t(s,r-1) andM(r,n) and is determi-

ned by the tightest bounds of the two regions. A pair of optimal solut{omg), x(r,t)with m
<r <t <n is calledmonotonousf the order and inventory values of the solutions coincide for



the common periods. For this case the notat{on) /7 x(m,n)will be used. It is obvious that
for monotonous pairs of solutions the periads andt+1, if t < n, are setup periods.
Lemma 1: Let the dynamic lot size mod®l(m,n) be considered and let the peried be a
planning horizon for the forecast horizomhenx(m,r-1) /7x(m,n) and x(r,n) /7x(m,n) hold
for alln >t.

Proof: According to the definition the periods a setup period for all modei4(m,n). Then
the parts of the solutiox(m,n)covering the periods,,m+1,...,r-1landr,r+1,...,n must be op-
timal for the subproblemg(m,r-1)andM(r,n), respectively.]

Two more examples illustrate the various situations occuring fotdbdity regions and opti-
mal solutions.

Example 4. Letd = (17,9,12,10,9,7,9,5and s=20. Then the stability region$(1,t) for
t=1,2,...,8 are as provided in Tab. 2 and in Fig. 1: The horizontal and vertical axes of the figu-
res cover the growing number of periods and the setup cost sahespectively The appro-
priate stability regions are represented by vertical lines.IGwer and upper bounds of these
lines are also connected to explain which variations of the regionsdathe initial cost input
s=20can be observed. The appropriate optimal solutions are shown in Tab. 2.

Tab. 2 and Fig. 1 about here

Remark: It can be seen that the nonmonotonous changes of the regions are acabimypanie
solutions which revise previously planned values and are honmonotonous asomel\.el
the stability regions and optimal solutions for the per®dsd8 form monotonous pairs.

Below the sequential stability regions are analysed under thenme of the planning and fo-
recast horizons. The reason for such assumption is not only mathematicallypbiakso em-
pirically clear: It guarantees also monotonous pairs of optimatisn; and the monotonicity
for stability regions certainly makes only sense for such pairs of solutions.

Example 5:d = (3,3,...)ands = 10. It can be seen that even stationary demand will not
guarantee the monotonicity of optimal solutions and stability regiommsdare Fig. 2 and
Tab. 3).

Fig. 2 and Tab. 3 about here

The optimal solutions, the minimal costs divided by the number of perindgha stability
regions are contained in Tab. 3. Fig. 2 shows again the variation ctabidity regions



around the cost inpuid=10. Additionally, the values of the per-period minimal chitare
represented by a broken line . The relation betw&éht)andf; /t will be discussed in section
2.4.

2.2. Monotonous Pairs and Triples of Stability Regions

Lemma2: LetM(m,n)be considered, letl be a planning horizon for the forecast horizipn
and letn >t. Then

S(m,n)7S(m,r-1)andS(m,n)// S(r,n) (9)
hold for alln >t, i. e. monotonous pairs of stability regions exist.
Proof: Lets' /7S(m,n).The optimal solutiorx(m,n)is the same as that for the initial parameter
s. According to lemma X(m,r-1)andx(r,n) belong tox(m,n) and are therefore optimal for

M(m,r-1) andM(r,n) with the setup cost inpst, respectivelyl]

Monotonicity results may also be obtained if no explicit planning aretést horizons are gi-
ven. Let T denote the set of setup periods of an optimal solution for the proib{ém).

Lemma 3. The inclusionsx(1,i-1) /7x(1,j-1) and S(1,j-1)/7S(1,i-1) hold for all i, ] 7T,
1<i<j=n

Proof: The optimal solutions fulfill obviously(1,i-1) /7 x(1,j-1) if i > 1. If the second
solution is optimal fos' /7S(1,j-1) then this is also true for the first solution, i. e.
s'[7S(1,i-1).00

For illustration example 2 can be used:

The optimal solution ig = (3,3,0,4,0,3)with T = {1,2,4,6} Thenx(1,1) = (3)//

x(1,3) = (3,3,0)7x(1,5) = (3,3,0,4,0)and S(1,1) = [0,+») [7S(1,3) = [1,3] [7S(1,5) =
[2,3], but S(1,2) =[2,+).

Under the same conditions as in lemma 2 the existence of monotonous triples can be proved.

Theorem 2: (i) Let M(1,n) be considered andl be a planning horizon for the forecast hori-

zontand n =t >r. Then S(1,n)//S(1,r-1)n S(r,n) (20)

holds (ii) Let additionally r =t or let the period-1 be an ordinary planning horizon for
M(1,n). Then S(1,t) » S(r,n)/7S(1,n) 11
holds. (iii) Let the conditions from (i) and (ii) be fulfilled and

let furthermore S(1,t)/7S(1,r-1) 12)



be true. Then S(1,n) = S(1,r-1)» S(r,n) (13)
holds.

Proof. The relation (10) is a consequence of lemma 2.

Let the inclusion (11) be studied: The caset has been proved in [10]. Lét> r: The pe-
riod t-1 itself is an ordinary planning horizon. For this case the relation

S(1,t) n S(t,n) 7 S(1,n)has been proved in [11] as well. Let the probM(nn) be conside-
red. Sincer is setup period for the probleli(1,n)the property of the periodl to be ordi-
nary planning horizon does not depend on the periods befétence the periotil is also
ordinary planning horizon fdvi(r,n). Thenlemma 2 can be applied arf(r,n) /7 S(t,n)holds,
i.e. S(L,t)n S(r,n) 7S(L,t)n S(t,n) 7 S(1,n)is true.

The relations (10) - (12) yield immediately the identity (13).

Remarks: (i) If r-1 is an ordinary planning horizon, then theorem 2 coincides with the results
presented in [11].

(i) It can be seen that monotonous pairs and triples appear togeth@ne of the notions
seems to be redundant under the conditions of the theorem. However, the madpaibnic
pairs of stability regions shows the model to become less rohilsinereasing time horizon,
while (strictly) monotonous triples represent a more regular type of monotonicity

(i) If t-1 is not an ordinary planning horizon the relation (11) might not holda Ee6 in the
example 5Thenr-1=3 is a planning horizon for the forecast horizeh. The period-1=4

is obviously not an ordinary planning horizon and

S(1,5)n S(4,6) =[6,18] n [6,+ «) [7[9,27] = S(1,6).

(iv) Unfortunately, the inclusion (12) which guarantees strictly monototrquies will not
hold in general. Sufficient conditions for (12) will be discussed in the next section.

(v) The relations (10) and (11) may all be distinct as the next example will display

Example 6: Led = (7, 1, 18, 6, 1, 2), s = 5Then the optimal solutiong(1,3) = (8,0,18),
x(1,4) = (8,0,18,6)and x(1,6) = (8, 0, 18, 9, 0, @re found and(1) =i(2) =1,i(3) =3, i(4)
=1i(5) = i(6) = 4. Then period-1 = 3 is an ordinary planning horizon and the caset of

the theorem occurs. However, the stability regi8(%6) = [4,+x), S(1,3) = [1,36], S(1,4) =
[1,6] and S(1,6) = [4,9] are quite different and the inclusions (10) and (11) are really not
identities:[4,6] //[4,9] [/[4,36].

2.3. Sufficient Conditions for Strictly Monotonous Triples
Now, it will be discussed in which cases the inclusion (12) secthm@gxistence of strictly

monotonous triples is valid. Here, only the case »sft , i. e. the case of ordinary planning
horizons is regarded.



First, let an ordinary planning horizasl for a modelM(1,t) be considered and led;
denote the set of all setup cost inputs for which the appropriate dshadions have the
planning horizort-1. This set can be characterized by the following lemma.

Lemma 4: Let st be the largest upper bound of all the stability regions of those dystira
tions forM(1,t) which satisfy the relationii(t) = t. 14)
Then J; =[0,st] holds. (15)

Proof: When moving from one stability region to the next and increasirag@n be found that
the number of setudgs) of the corresponding optimal solution will not increase (compare
[4]), i.e. k(s)=k(s"), holdsif s<s'"

The last setup periodt) from recursion (5) is also depending srandk and it will not
increase with growing or falling k (compare [2]). As a consequence, if the notaifgg) is
used, the relation(t,s) >i(t,s"), if 0<ss<s' (16)
holds. Then (16) immediately yields the formula (15).

This set isl3 = [0,1] in the example 1 (comp. Tab.. 1Lt M(1,3)in example 6 be considered.
The solutiong7,1,18) and (8,0,18)guarantee(3) = 3. The stability regions for both the so-
lutions arg0, 1] and [1,36], respectively. Theds = [0,36] =[O, 1] //[1,36].

Lemma 5: The following statements are equivalent:
S(1,t-1) = S(1,t) JSA )T K (17)
S(A,t-1)7 k. (18)

Proof:  (18)= (17): Let x(1,t)be the optimal solution fdvl(1,t) with the initial cost
parametes //S(1,t-1).The periodt-1 is an ordinary planning horizon.

According to lemma 2 the inclusio8(1,t)//S(1,t-1)holds.

Let nows' [/S(1,t-1)[/ . It has to be shown thas' /7 S(1,t)holds. It is clear that-1 is a
planning horizon fors', too. Therefore an optimal solution fdt(1,t) with the parametes'
will have a setup in the period Then an optimal solutiox(1,t) for M(1,t) with s' is
determined by the optimal solutiotl,t-1)and by adding one setup x¢1,t-1). Hence,s' //
S(1,1).

The other direction of the proof is quite obviol.

Hence, the conditio®(1,t)//S(1,t-1) securing the relation (13) for in theorem 2 is fulfilled if
and only if the cost inputs fro®(1,t-1)provide an optimal solution ofM(1,t) with i(t) = t.

In other words, monotonous triples occur if the stability)sef the planning horizoh is suf-
ficiently large and contains the <&fl,t-1)



Let the example 6 be analysed once more: Th8(de8)= [1,36]is not a subset @i = [0,6] .
Thus the property (18) cannot be guaranteed.

Unfortunately, the condition (18) (or (12)) is not necessary for relation (13).

Example 7: Les =5 andd = (4, 2, 5, 3, 4)ThenS(1,2) = [2,+w), S(1,3) =[2,10], S(1,5)=
= S(3,5) =[3,8] andr=t=3 andj=5. For this example the relation (13) holds,

i. e. S(1,3)n S(3,5) = S(1,5) although the properties (12) and (18) are not satisfied:
S(1,2)7S(1,3) and S(1,2)7J33 =1[0,12].

2.4. The Size of the Stability Regions and the Time Horizon

Let the example 5, Tab. 3 and Fig. 2 be considered once more. The petied8m are
planning horizons for the forecast horizdans 3m+2, m=1,2,... .The average (per-period)
minimal cost occuring with the use of the time horizehis (10 + 3 + 6)m/3m = 6.33... .
This value is minimal for the given problem. If the time horizon taubed in the lot size
problem can be-1=3, then this horizon is accompanied by the stability re§i@n3) = [6,+c

), which is probably large enough. If, however, planning procedures do not allbve sucall
time horizon, the next optimal time horizonrid = 6 with the stability regionS(1,6) =
[9,27]. Then, perhaps the time horizérwill be prefered with higher average minimal cost
6.4 but with a better stability regio8(1,5) = [6,18]. This region might be prefered since it
leaves more space for equiliteral setup cost variations.



Conclusions

With growing time horizon stability regions of the dynamic lotesproblem will behave
quite different. Monotonous pairs and triples of stability regions and mooos$ pairs of
optimal solutions can be identified if planning and forecast horizonst. eStrictly
monotonous triples appear if the ordinary planning horizon has a sufficiarge stability
set. Concerning the practical application of the dynamic lot sizéehthe analysis makes
clear that the robustness of optimal solutions depends on the demamnul gatteany cases a
larger time horizon will reduce this robustness and sometingesothiistness is as small as in
the worst subintervals of the time horizon. However, nonmonotonous behaviorstditiiiigy
regions can also be observed.
The size of the stability region can serve as one of the criteria for thenoheteon of the time
horizon of the dynamic lot size problem. It can happen that an econgnpceiiérable time
horizon generates a rather unstable solution. Then it is perhaps wosidering other time
horizons with a more preferable stability region.
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Tables

Stability region | [0,1] [[1,3] [[3,+ »)
optimal solutior] (3,2,1) | (3,3,0) (6,0,0)
K(s) 3 2 1
H(s) 0 1 4
i(3) 3 2 1

Tab. 1: Stability regions and other relevant information

t 1 |2 |3 |4 |5 ]|6]|7 S(1,1)
x(1,2) 126| 0 [9,+0)
x(1,3) |26 0 | 12 [9,24]
x(1,4) 1260 | 22| O [10,44]
x(1,5) [26]0 |31 0| O [19,67]
x(1,6) |26 0 | 22l 0| 1§ O [10,30]
x(1,7) 1260 | 22/ 0| 25 0| O [18,39]
x(1,8) 1260 | 22/ 0| 1§ O] 14 [10,2b]

Tab. 2: Optimal solutions associated with the growing time horizon
t 1 |2 |3|4]|5]|6| 7|8 f S(1,t)
x(1,2)|6 | O 13/2=6.5| [&)
x(,3)|]9 |0 ] 0 19/3=6.336, «)
x(1,4) |6 |0] 6|0 26/4=6.4] [3,12]
x(1,5[9]0]0[6]0 32/5=6.4 [6,18]
x(1,6) ]9 |0 0] 9] 0] O 38/6=6.339,27]
x(,7)[|9 10| 0| 6] 0] 6] O 45/7=6.436,12]
x(1,8)[9]0]0[ 9] 0] O] 6] O 51/8=6.38,25]
x(,9[9]0]0[9] 0] 0] 9/ O 57/9=6.3[,21]

Tab. 3: Optimal solutions, minimal costs and stability regions for example 5
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Fig. 1: Stability region$(1,t)for example 4
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Fig. 2: Stability region$(1,t)and average minimal codjit for example 5



