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Abstract: The EOQ repair and waste disposal problem was studied first
by Richter, 1997. A first shop is providing a homogeneous product used by
a second shop at a constant demand rate. The first shop is manufacturing
new products and it is also repairing products used by a second shop, which
are then regarded as being as good as new. The products are employed by a
second shop and collected there according to a repair rate. The other products
are immediately disposed of as waste. At the end of some period of time,
the collected products are brought back to the first shop and will be stored
as long as necessary and then repaired. If the repaired products are finished,
the manufacturing process starts to cover the remaining demand for the time
interval. The model was extended by Saadany and Jaber, 2008 to the problem
of minimizing the total cost of production, remanufacturing and inventory while
incorporating additional switching costs. The switching cost is incurred when
the process shifts from repair to production and from production to repair.
However, in their paper the authors did not provide a complete solution to this
complex problem. We provide the solution in this paper.

Keywords: EOQmodel, Production/recovery, Reuse, Waste disposal, Switch-
ing cost
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1 Introduction

In recent years, reverse logistics has been receiving increasing attention from
academia and industry.

There is increasing recognition that careful management can bring both en-
vironmental protection and lower costs; environmental and economic consider-
ations have led to manufacturers taking their products back at the end of their
lifetime. As a result, the reverse logistics process is now considered to be a basis
for generating real economic value and to provide support for environmental
concerns.

Rogers and Tibben-Lembke, 1998 [25] defined reverse logistics as the process
of planning, implementing and controlling the efficient and cost effective flow of
raw materials, in-process inventory, finished goods and related information from
the point of consumption to the point of origin for the purpose of recapturing
value or proper disposal.

The integration of forward and reverse supply chains resulted in the origi-
nation of the concept of a closed-loop supply chain. The whole chain can be
designed in such a way that it can service both forward and reverse processes
efficiently.

Akçalı and Çetinkaya, 2011 [1] published the most recent review of quanti-
tative modelling for inventory and production planning in a closed-loop supply
chain.

Inventory models are divided according to modelling demand and return
processes into two main categories: deterministic and stochastic. The subject of
this paper is deterministic inventory models with constant demand and return.
The economic order quantity model (EOQ model), which was derived by Ford
W. Harris in 1913, became the basis for many reverse logistics models because of
its simplicity and intelligibility. Andriolo et al., 2014 [2] provided a most detailed
review in their work on the EOQ problem. Shrady, 1967 [29] was the first to
apply the EOQ model to reverse logistics processes. He introduced an EOQ
model with instantaneous production and repair rates. A closed-form solution
was developed. In his work an efficient policy P (m, 1) was established, which
means that within each remanufacturing cycle a number m of remanufacturing
batches of equal size are followed by exactly one manufacturing batch.

This work was extended by Nahmias and Rivera, 1979 [19] and Mabini et al.,
1992 [18] extended Shrady’s model to the multi-item case. Koh et al., 2002 [11]
analysed a model similar to that of Shrady, 1967 [29], but with some differences.
They considered two types of policies,P (m, 1) and P (1, n), under a limited repair
capacity, where n is the number of manufacturing batches. They examined the
cases of a smaller and a larger recovery rate compared to the demand rate.

Teunter, 2001 [31] generalized the results of Schrady by examining different
structures of the remanufacturing cycle. He considered different types of policies
by placing the n manufacturing batches and m recovery batches in different
orders. He concluded that the policy P (m,n),m > 1, n > 1 will never be
optimal if the above-mentioned m and n are simultaneously larger than one,
and that only the two policies P (1, n) and P (m, 1) are relevant.
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Choi et al., 2007 [4] generalized the P (m,n) policy of Teunter by considering
the ordered sequence of manufacturing and remanufacturing batches within the
cycle as decision variables. Through sensitivity analysis they found that only
0.2% out of the 8,100,000 tested instances of the model have an optimal solution
with both m and n greater than one. Liu et al., 2009 [17] generated and solved
60,000 instances and found that only 0.19% of them have an optimal solution in
P (m,n) with both m and n greater than one. Konstantaras and Papachristos,
2008 [14] extended Teunters approach and found the exact solutions for the
optimal numbers m and n.

In the literature two different types of problems are considered. Some au-
thors have searched for an optimal policy P (m,n) that involves determining
the optimal number of manufacturing and remanufacturing batches (we call
this problem ”ONB”) for given recovery or waste disposal rates β or α. Others
have tried to go further by determining the optimal recovery or waste disposal
(we call this problem ”OWDR”).

Richter was the author of a series of papers where he considered an EOQ
model with respect to the waste disposal problem. Richter, 1996 [21] proposed
an EOQ model that differed from that of Shrady, who assumed a continuous
flow of used products to the manufacturer. Richter, 1996 [21] assumed a system
of two shops: the first shop provided a product used by a second shop; the
first shop manufactures new products and repairs (in contemporary terms—
remanufactures) products already used by the second shop and collected there
according to some rate; other products are disposed of according to a disposal
rate. At the end of a certain time interval the collected items are brought back
to the first shop. Richter, 1997 [23] examined the optimal inventory holding
policy if the waste disposal (return) rate is a decision variable. The result of
this study was that the optimal policy has an extremal property: either reuse
all items without disposal or dispose of all items and produce new products;
that is, the policy of the type P (m,n) with m > 1 and n > 1 is never optimal.
He also derived a closed-form for the optimal policy parameters. This analysis
of the repair and waste disposal model was continued in the papers by Richter
and Dobos, 1999 [24] and Dobos and Richter, 2000 [5].

Dobos and Richter, 2003 [6] and Dobos and Richter, 2004 [7] studied a
production/recycling system with constant demand that is satisfied by non-
instantaneous production and recycling. They concluded that it is optimal
either to produce or to recycle all items that are brought back. Dobos and
Richter, 2006 [8] extended their previous work by considering the quality of the
returned items.

Saadany and Jaber 2010 [27] argued that such a pure policy of no waste
disposal is technologically infeasible and suggested the introduction of a de-
mand function that depends on two decision variables: purchasing price and
acceptance quality level.

Saadany et al., 2012 [28] regarded the assumption that an item can be re-
covered indefinitely as unrealistic: material degrades in the process of recycling
and loses some of its mass and quality, thereby making the option of multiple re-
covery somewhat infeasible. Saadany et al., 2012 [28] developed a model where
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an item can be recovered only a finite number of times.
Some authors extended the above-mentioned models to take account of var-

ious assumptions. One option is to allow for backorders, where some customers
are compensated for having to wait for their delayed orders by either a reduction
in price or some other form of discount, which is a cost incurred by the sup-
plying firm. This results in a backorder cost. Konstantaras and Papachristos,
2006 [13] extended the work of Richter, 1996 [21] by allowing for backorders
in remanufacturing and production while keeping the other assumptions the
same. Saadany and Jaber, 2009 [10] extended the work of Richter, 1996 [21] by
assuming that demand for manufactured items is different from that for remanu-
factured (repaired) items. This assumption results in lost sales situations where
there are stock-out periods for manufactured and remanufactured items; that
is, demand for newly manufactured items is lost during remanufacturing cycles
and vice versa. In the study of Konstantaras et al., 2010 [16], which extended
the work of Koh et al., 2002 [11], a combined inspection and sorting process is
introduced with a fixed setup cost and unit variable costs. This study assumes
that remanufactured and newly purchased products are sold in a primary mar-
ket whereas refurbished units are sold in a secondary market. Konstantaras and
Scouri, 2010 [15] considered two models: one with no shortages and the other
with shortages. Both models are considered for the case of variable setup num-
bers of equal sized batches for the production and remanufacturing processes.
For these two models, sufficient conditions for the optimal type of policy, refer-
ring to the parameters of the models, are proposed. Hasanov et al., 2012 [9]
extended the work of Jaber and Saadany, 2009 [10] for the full-backorder and
partial-backorder cases, where recovered items (remanufactured or repaired) are
perceived by customers to be of lower quality; that is, not as good as new items.

Pishchulov et al., 2014 [20] studied a closed-loop supply chain in which a
single purchaser orders a particular product from a single vendor and sells it on
the market. A certain fraction of used items are returned to the purchaser from
the market. The latter is responsible for collecting and returning them to the
vendor. In addition to manufacturing new items, the vendor is able to remanu-
facture the returns into items that are as good as new and are subsequently used
to meet the demand from the market. The questions addressed by this study
pertain to the optimal centralized control of this closed-loop supply chain, the
individually optimal policies of its members and the coordination within this
supply chain under a decentralized control.

However, for some of the above-mentioned models, so far no complete solu-
tions have been presented. In the paper of Saadany and Jaber, 2008 [26] the
extended EOQ production, repair and waste disposal model of Richter, 1996
[21] was modified to show that ignoring the first time interval results in an un-
necessary residual inventory and consequently an over estimation of the holding
costs. They also introduced switching costs in order to take into account pro-
duction losses, deterioration in quality or additional labour. When shifting from
producing (performing) one product (job) to another in the same facility, the
facility may incur additional costs, referred to as switching costs, when alternat-
ing between production and repair runs. The special case of even numbers m
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and n was studied and conditions were provided to decide which of two policies
P (m,n) and P (m2 ,

n
2 ) is preferable, but a general optimal policy for the problem

was not presented. In our study we will provide a general optimal solution for
the model.

Our paper is organized in the following way: in the second section, the as-
sumptions and notations are presented; in the third section, the extended EOQ
production, repair and waste disposal model, with switching costs, is formu-
lated and analysed; in the fourth section, the ONB problem is studied, an exact
optimal policy is derived and some numerical analysis is conducted; in the fifth
section, the impact of the waste disposal rate to the numbers of batches is con-
sidered; the sixth section addresses the OWDR problem and the seventh section
contains our conclusions.

2 Assumptions and notations

2.1 Assumptions

This paper assumes: (1) infinite manufacturing and recovery rates; (2) repaired
items are as good as new; (3) demand is known, constant and independent; (4)
the lead time is zero; (5) a single product case; (6) no shortages are allowed; (7)
unlimited storage capacity is available; and (8) an infinite planning horizon.

2.2 Notations

T – length of a manufacturing and repairing time interval (units of time), where
T > 0

T1 – length of the first manufacturing time interval (units of time), where
T1 < T and T1 > 0

n – number of newly manufactured batches in an interval of length T
m – number of repaired batches in an interval of length T
d – demand rate (units per unit of time)
h – holding cost per unit per unit of time for shop 1
u – holding cost per unit per unit of time for shop 2
α – waste disposal rate, where 0 < α < 1
β – repair rate of used items, where α+ β = 1 and 0 < β < 1
x – batch size for interval T , which includes n newly manufactured and m

repaired batches; x = dT
r – repair setup cost per batch
s – manufacturing setup cost per batch
r1 – setup and switching costs of the first repair run
s1 – setup and switching costs of the first production run, denoted by r1 =

r+ switching cost from production to repair, and s1 = s+ switching cost from
repair to production.
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3 Formulation of the model and its analysis

Richter, 1996 [21] introduced an EOQ repair and waste disposal model. A first
shop is providing a homogeneous product used by a second shop at a constant
demand rate of d items per time unit. The first shop is manufacturing new
products and it is also repairing products used by a second shop, which are
then regarded as being as good as new. The products are employed by a second
shop and collected there according to a repair rate β. The other products are
immediately disposed of as waste according to the waste disposal rate α = 1−β.
At the end of some period of time [0, T ], the collected products are brought back
to the first shop and will be stored as long as necessary and then repaired. If
the repaired products are finished, the manufacturing process starts to cover the
remaining demand for the time interval. The switching cost is incurred when the
process shifts from repair to production and from production to repair. In the
study of Saadany and Jaber, 2008 [26], the holding cost expression in Richter’s
model was modified because of the effect of the first time interval (see Fig.1).
This helps to reduce the total inventories of all the subsequent time intervals.

Figure 1: The modified behavior of inventory in the 1st and 2nd shops

According to Saadany and Jaber, 2008 [26], the modified cost function in
the model of Richter, 1996 [23] with switching costs is equal to

K2(x,m, n, α) = ((m− 1)r + r1 + (n− 1)s+ s1)+

+
h

2d

(
α2x2

n
+

β2x2

m

)
+

uβTx

2
− uβ2x2(m− 1)

2dm
.

The modified cost per time unit function is obtained by dividing by T

K(x,m, n, α) =
K2(x,m, n, α)

T
=

d

x
((m− 1)r + r1 + (n− 1)s+ s1)+

+
x

2

[
h

(
α2

n
+

β2

m

)
+ uβ − uβ2(m− 1)

m

]
,

(1)

where x = dT . The function (1) is convex and differentiable in x, therefore
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there is a unique minimum point

x(m,n, α) =

√
2d((m− 1)r + r1 + (n− 1)s+ s1)

h(α
2

n + β2

m ) + uβ − uβ2(m−1
m )

. (2)

The minimum cost per time unit for given values m,n, α is obtained by substi-
tuting (2) into (1):

K(m,n, α) =

=

√
2d(mr + ns+ r1 + s1 − r − s)

(
h
(α2

n
+

β2

m

)
+ uβ − uβ2(m− 1)

m

)
.

(3)

4 Determining the optimal policy for the gener-
alized EOQ waste and disposal model (ONB)

To determine the optimal policy means to find the optimal numbers m and n
for the minimum cost found in the previous section (3) (the ONB problem). In
this section α will be a constant and not a variable. Therefore, the function (3)
will be denoted just by K(m,n). The problem of determining the optimal batch
numbers takes the following form as a nonlinear integer optimization problem
(4)

min
(m,n)

K(m,n),

m, n ∈ {1, 2, . . . }.
(4)

The determination of optimal values for m,n and later also α, constitutes the
problem of our paper and of other studies as well.

In order to derive explicit expressions for the optimal values in problem (4)
let us first introduce the notations

W = s1 − s+ r1 − r, a1 = βu− β2u = αβu,

a2 = β2(h+ u), a3 = α2h,

S = s, R = r.

(5)

The parameter W can be treated as the ”total net” switching cost. One can see
that all parameters W,S,R, a1, a2, a3 are positive. Then the function (3) can be
expressed by

K(m,n) =

√
2d(W +mR+ nS)(a1 +

a2
m

+
a3
n
). (6)

Let the radicand of the root (6) be denoted by

L(m,n) = (W +mR+ nS)(a1 +
a2
m

+
a3
n
). (7)
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Instead of solving the problem (4) the function (7) can be minimized m ≥ 1, n ≥
1, i.e., the following two-dimensional nonlinear integer optimization problem is
relevant:

min
(m,n)

L(m,n) = min
(m,n)

(W +mR+ nS)(a1 +
a2
m

+
a3
n
),

m, n ∈ {1, 2, . . . }.
(8)

First, let us consider the following continuous auxiliary problem:

min
(m,n)

L(m,n) = min
(m,n)

(W +mR+ nS)(a1 +
a2
m

+
a3
n
),

m, n ∈ R, m ≥ 1, n ≥ 1.
(9)

By analyzing the first partial derivatives

∂L(m,n)

∂m
= R(a1 +

a3
n
)− a2

m2
(W + nS),

∂L(m,n)

∂n
= S(a1 +

a2
m

)− a3
n2

(W +mR),

(10)

we can formulate the following lemma:

Lemma 1. If m > 0, n > 0, there are two curves of local minima (7) with
respect to m:

N(m) =

√
a3m(W +mR)

S(a1m+ a2)
, (11)

with respect to n :

M(n) =

√
a2n(W + nS)

R(a1n+ a3)
, (12)

and the point of local minimum:

(m∗, n∗) =

(√
Wa2
Ra1

,

√
Wa3
Sa1

)
. (13)

For the proof of Lemma 1 see the Appendix A.
Let us denote the radicands of the expressions (13) by

A =
Wa2
Ra1

=
(s1 − s+ r1 − r)β(h+ u)

rαu
,

B =
Wa3
Sa1

=
(s1 − s+ r1 − r)αh

sβu
,

(14)
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and the value of M(n) (12), if n = 1, and N(m) (11) if m = 1 by C and D:

C = M(1) =
a2(S +W )

R(a1 + a3)
,

D = N(1) =
a3(W +R)

S(a1 + a2)
.

(15)

Then the optimal solution for continuous problem (9) is provided by the
following theorem (The detailed proof is contained in the Appendix A.)

Theorem 1. The optimal solution to the problem (9) has the following struc-
ture depending on the value of the parameters A,B,C,D:

1. If A ≥ 1, B ≥ 1, then m =
√
A, n =

√
B,

L(
√
A,

√
B) = L1 = (

√
Wa1 +

√
Ra2 +

√
Sa3)

2

2. If A < 1 or B < 1 and C ≥ 1, D < 1, then m =
√
C, n = 1,

L(
√
C, 1) = L2 = (

√
(W + S)(a1 + a3) +

√
Ra2)

2

3. If A < 1 or B < 1 and C < 1, D ≥ 1, then m = 1, n =
√
D,

L(1,
√
D) = L3 = (

√
(W +R)(a1 + a2) +

√
Sa3)

2

4. If A < 1 or B < 1 and C < 1, D < 1, then m = 1 n = 1,
L(1, 1) = L4 = (W +R+ S)(a1 + a2 + a3).

By applying this result the optimal solution to the original problem
(8) can be easily derived:

Theorem 2. The optimal solution to the problem (8) has the following structure
depending on the value of the parameters A,B,C,D:

1. If A ≥ 1 and B ≥ 1, then

(m,n) =

= argmin{L([
√
A], [

√
B]), L([

√
A] + 1, [

√
B]),

L([
√
A], [

√
B] + 1), L([

√
A] + 1, [

√
B] + 1)}

2. If A < 1 or B < 1 and C ≥ 1, D < 1, then

(m,n) = argmin{L([
√
C], 1), L([

√
C] + 1, 1)},

3. If A < 1 or B < 1 and C < 1, D ≥ 1, then

(m,n) = argmin{L(1, [
√
D]), L(1, [

√
D] + 1)},

4. If A < 1 or B < 1 and C < 1, D < 1, then

(m,n) = (1, 1),

where [. . . ] denotes the integer (or floor) part of a number.

The proof of this theorem follows from the quasi convexity of the function
L(m,n).

9



Numerical analysis The input parameters for numerical analysis are repre-
sented in the Table 1. Each of the model parameters has been set to vary in a
range, which are represented in the Table 1.

Table 1: The input parameters for the numerical analysis.

d α h u r s r1 + s1

Max 10000 0 1 1 1 1 1
Min 10000 1 50 50 500 500 1000

The minimum and maximum values of parameters s and h were chosen with
respect to

20 ≤
√

2ds

h
≤ 10000,

where x =
√

2ds
h is the classical EOQ value for the non-remanufacturing case.

The sets of parameters (h, u, r, s, r1 + s1) for 10,000 instances were randomly
generated. When generating u, h and r1 + s1, the constraints h > u and
r1+ s1 > r+ s were respected. According to our study, the policy P (m,n) with
m > 1, n > 1 is optimal for 2304 instances out of 10,000; some more results are
displayed in Table 2.

Table 2: Results of the numerical analysis.

P (m,n),m > 1, n > 1 P (1, n) P (m, 1) P (1, 1)

2304 2808 3756 1132

5 The impact of disposal and return rates

Consider now the impact of disposal and return rates on the numbers of batches.
In other words, let us determine for which values of α the four different structures
of the optimal solution of theorems 1 and 2 appear.

Recall W will be the switching costs:

W = s1 + r1 − s− r.
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First let us rewrite the formulas (14) and (15) by

A(α) =
W (h+ u)

ru

1− α

α
,

B(α) =
Wh

su

α

1− α
,

C(α) =
(W + s)(h+ u)

r

(1− α)2

α(u+ α(h− u))
,

D(α) =
(W + r)h

s

α2

(1− α)(u+ h− αh)
.

Now let us formulate four properties of these functions. Some auxiliary
propositions are formulated. (The proofs are contained in Appendix B.)

Property 1. The functions A(α), C(α) are positive and decreasing if α ∈ (0, 1)
and the functions B(α), D(α) are positive and increasing if α ∈ (0, 1).

Property 2. Each of the equations A(α) = 1, B(α) = 1, C(α) = 1, D(α) = 1
has a unique solution α1, α2, α3, α4, correspondingly, if α ∈ (0, 1):

α1 =
W (h+ u)

ru+W (h+ u)
,

α2 =
su

su+Wh
,

α3 =

{
1
2

2(W+s)(h+u)+ru−
√

4hr(W+s)(h+u)+r2u2

(W+s)(h+u)−r(h−u) , (W + s)(h+ u) ̸= r(h− u)
h−u
2h+u , (W + s)(h+ u)− r(h− u) = 0

α4 =

{
1
2

−s(u+2h)+
√

4hs(W+r)(h+u)+u2s2

h(W+r−s) , W + r − s ̸= 0
u+h
u+2h , W + r − s = 0

.

Property 3. The functions A(α) and C(α) have two common points, if α ∈
(0, 1]: (1, 0) and (α2,

W 2h(h+u)
rsu2 ); moreover: A(α) > C(α), if α ∈ (α2, 1),

A(α) < C(α), if α ∈ (0, α2). The functions B(α) and D(α) have two com-

mon points, if α ∈ [0, 1): (0, 0) and (α1,
W 2h(h+u)

rsu2 ); moreover: B(α) > D(α), if
α ∈ (0, α1), B(α) < D(α) if α ∈ (α1, 1).

Property 4. The equations A(α) = B(α) and C(α) = D(α) have unique so-
lutions α∗ and α∗∗, correspondingly. Moreover, if C(α∗∗) > 1 then A(α∗) > 1,
if C(α∗∗) < 1 then A(α∗) < 1, if C(α∗∗) = 1 then A(α∗) = 1 and α∗ = α∗∗,
where

α∗ =

√
(h+u)s

ru

1 +
√

(h+u)s
ru

A(α∗) = B(α∗) =
W

u

√
h(h+ u)

rs

(16)
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Figure 2: Behaviour of the functions A(α), B(α), C(α), D(α)

Taking into account Statement 4, there are three different types of positional
relationships of curves A(α), B(α), C(α), D(α) (compare Fig. 2):

1. The intersection point of A(α) and B(α) is lower than 1: A(α∗) < 1

2. The intersection point of A(α) and B(α) is larger then 1: A(α∗) > 1

3. All four curves have one intersection point: A(α∗) = B(α∗) = C(α∗) =
D(α∗) = 1.

The four different structures for the objective function appear due to the
four distinct relations between the values A, B, C and D (see Theorem 1):

1. If A ≥ 1, B ≥ 1, then m ≥ 1, n ≥ 1;

2. If A < 1 or B < 1 and C ≥ 1, D < 1, then m ≥ 1, n = 1;

3. If A < 1 or B < 1 and C < 1, D ≥ 1, then m = 1, n ≥ 1;

4. If A < 1 or B < 1 and C < 1, D < 1, then m = 1 n = 1.

It is obvious that the second and third cases will appear independently of
the positional relationships of curves A(α), B(α), C(α), D(α). The appearance
of the first and fourth cases depends on the intersections of the curves. The
condition A(α∗) > 1, can be rewritten in the following form:

W > u

√
rs

h(h+ u)
. (17)

It can be seen that the condition (17) is equivalent to the relation

α1 > α2.

Denote the right hand side of inequality (17) by:
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W ∗ = u

√
rs

h(h+ u)
.

If W > W ∗ there exists an interval when simultaneously A > 1 and B > 1:
(α1, α2), this is the first case of theorem 1. Therefore,

m ≥ 1, n = 1, α ∈ (0, α1)

m ≥ 1, n ≥ 1, α ∈ [α1, α2]

m = 1, n ≥ 1, α ∈ (α2, 1)

On the other hand, if W < W ∗, we obtain that at any α ∈ (0, 1) either A(α)
or B(α) is less then one, here we have second, third and fourth cases of theorem
1:

m ≥ 1, n = 1, α ∈ (0, α3]

m = 1, n = 1, α ∈ (α3, α4)

m = 1, n ≥ 1, α ∈ [α4, 1)

In the third situation, if W = W ∗, when the four curves have a common
unique intersection, α1 = α2 = α3 = α4 = α∗ = α∗∗, we have:

m ≥ 1, n = 1, α ∈ (0, α∗]

m = 1, n ≥ 1, α ∈ [α∗, 1)

Numerical example 1 Consider a case with the parameters d = 10000, h =
5, u = 2, r = 30, s = 90, r1 = 50, s1 = 150. Consider different values of
parameter α ∈ (0, 1). Switching Costs: W = 80.

It can be easily calculated that A(α∗) = 4, 55 and W ∗ = 17, 57. Here
we have the appearance of the first case of Theorem 1. We find that: α1 =
0, 31, α2 = 0, 903. Consider also the case when all parameters are the same but
there is no switching cost in consideration, i.e., W = 0. Denote by K̄(m,n, α)
the corresponding cost. For the results see Fig. 3.

Numerical example 2 Consider a case with parameters: d = 10000, h =
5, u = 2, r = 30, s = 90, r1 = 32, s1 = 93. Consider different values of
parameter α ∈ (0, 1). Switching Costs W = 5. A(α∗) = 0, 29. W ∗ = 17, 57.
We have that W ∗ > W and then find α3 = 0, 657, α4 = 0, 713. The results are
displayed in Fig. 4.

6 The optimal waste disposal rate (problem OWDR)

In this section the problem OWDR is considered. Let α ∈ [0, 1]. Note that on
the one hand, in some situations no remanufacturing is suitable. In this case
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α = 1, m = 0, n = 1, and the model reduces to the classical EOQ:

KEOQ
α=1 (x) =

ds

x
+

hx

2

with the optimal cost equal to
√
2dsh. On the other hand, if all products are

remanufactured, then α = 0, m = 1, n = 1 and the model would be:

KEOQ
α=0 (x) =

dr

x
+

(h+ u)x

2

and the optimal cost would be equal to
√
2dr(u+ h).

Recall that for all other α the functionK(m,n) was defined as (6): K(m,n) =√
2dL(m,n).
Let us denote

K1 =
√
2dL1 =

√
2d(
√

Wa1 +
√
Ra2 +

√
Sa3),

K2 =
√
2dL2 =

√
2d(
√

(W + S)(a1 + a3) +
√
Ra2),

K3 =
√
2dL3 =

√
2d(
√

(W +R)(a1 + a2) +
√
Sa3),

K4 =
√
2dL4 =

√
2d(W +R+ S)(a1 + a2 + a3).

It can be easily proved that

K4 ≥ K2 ≥ K1,

K4 ≥ K3 ≥ K1.

Substituting the formulas (5) for the initial parameters gives

K1 =
√
2d(
√
Wαβu+ α

√
sh+ β

√
r(h+ u)) ≥

√
2d(
√

Wαβu+min{
√
sh,
√
r(h+ u)}) ≥ min{

√
2dsh,

√
2dr(h+ u)}.

We obtained that if α ∈ [0, 1], the optimal strategy for minimizing the
total costs will be α = 1 and α = 0 with the costs

√
2dsh or

√
2dr(u+ h),

correspondingly. The case α ∈ [αmin, αmax], 0 < αmin ≤ α ≤ αmax < 1 will be
studied in the future.

7 Summary and conclusions

In this paper we analysed the extended EOQ repair and waste disposal model
with switching costs. Two problems were considered: ONB and OWDR.

For the OWDR problem, we proved that the optimal strategy will be to
dispose of all used products or to remanufacture them all. This result agrees
with other results for similar problems.

We found the optimal policy P (m,n) for the ONB problem; it can have a
different structure depending on the value of the parameters A,B,C,D. The
optimal policy (m,n) depends on the disposal rate α, ceteris paribus; in other
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words, the higher the α and the higher them, the lower the n. The impact of the
switching cost becomes apparent for sufficiently high values. In this case the op-
timal numbers (m,n) can both be greater than one. This was illustrated by the
examples. To our knowledge, the case of having both optimal numbers m and
n greater then one, if m remanufacturing batches are followed by the sequence
of n manufacturing batches or vice versa, has not been previously mentioned in
the literature. Choi et al. [4] found solutions with n and m both greater than
one, but they had placed the n manufacturing batches and m recovery batches
in different orders and considered the ordered sequence of manufacturing and
remanufacturing batches within the cycle as decision variables. They found that
only 0.2% of the 8,100,000 tested problems had an optimal solution with both
m and n greater then one. In this study we conducted a numerical analysis for
an EOQ repair and waste disposal model with switching costs and we found
that the optimal m and n are both greater then one in about 23% of 10,000
different sets of parameters.
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Appendix A

Lemma 1. If m > 0, n > 0, there are two curves of local minima (9) with
respect to m:

N(m) =

√
a3m(W +mR)

S(a1m+ a2)
, (18)

with respect to n :

M(n) =

√
a2n(W + nS)

R(a1n+ a3)
, (19)

and the point of local minimum:

(m∗, n∗) =

(√
Wa2
Ra1

,

√
Wa3
Sa1

)
. (20)

Proof. It follows from (10) that

∂L(m,n)

∂m
< 0 ⇔ R(a1 +

a3
n
)− a2

m2
(W + nS) < 0 ⇔ m < M(n).

In other words, the function L(m,n) decreases in m, if m < M(n) and
increases in m, if m > M(n).

∂2L

∂m2
=

2a2(W + nS)

m3
> 0,
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if m > 0, n > 0. This means that L(m,n) is convex in m, therefore M(n) is the
curve of local minimum in m.

Substituting the expression for m (12) into (9) leads to

L(M(n), n) = 2

√
a2R(Sn+W )(a1n+ a3)

n
+ Sa1n+

Wa3
n

+Ra2 + Sa3.

By differentiating L(M(n), n) with respect to n we receive

L′(M(n), n) =

(
Sa1 −

Wa3
n2

)(
1 +

√
Ra2n

(Sn+W )(a1n+ a3)

)

and as the result

m∗ =

√
Wa2
Ra1

, n∗ = N(m∗) =

√
Wa3
Sa1

.

Since the Hessian

D(m∗, n∗) =

∣∣∣∣∣ ∂2L
∂m2

∂2L
∂m∂n

∂2L
∂n∂m

∂2L
∂n2

∣∣∣∣∣
(m∗,n∗)

=

(
4a2a3W (W + nS +mR)

m3n3
−

−
(Ra3

n2
− Sa2

m2

)2)
(m∗,n∗)

=
4a2a3W (W + n∗S +m∗R)

(m∗)3(n∗)3
≥ 0

is positively definite matrix, (20) is the point of local minimum of the function
(7).

Theorem 1. The optimal solution to the problem (9) has the following structure
depending on the value of the parameters A,B,C,D:

1. If A ≥ 1, B ≥ 1, then m =
√
A, n =

√
B,

L = L1 = (
√
Wa1 +

√
Ra2 +

√
Sa3)

2

2. If A < 1 or B < 1 and C ≥ 1, D < 1, then m =
√
C, n = 1,

L = L2 = (
√
(W + S)(a1 + a3) +

√
Ra2)

2

3. If A < 1 or B < 1 and C < 1, D ≥ 1, then m = 1, n =
√
D,

L = L3 = (
√
(W +R)(a1 + a2) +

√
Sa3)

2

4. If A < 1 or B < 1 and C < 1, D < 1, then m = 1 n = 1,
L = L4 = (W +R+ S)(a1 + a2 + a3)

Proof. The outline of the proof:

1. To find the optimal (m,n) using the Kuhn–Tucker conditions supposing
L(m,n) to be the convex function.

2. To prove that the function L(m,n) is convex at least at the point (m∗, n∗).
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3. To prove that the function L(m,n) is quasi convex at m > 0, n > 0.

4. To prove that the (m,n) which satisfies the Kuhn–Tucker conditions is
optimal using quasi convexity of L(m,n) and the Arrow and Enthoven,
1961 [3] theorem.

5. To find the values L1, L2, L3, L4

1. Recall that

A =
Wa2
Ra1

B =
Wa3
Sa1

C =
a2(S +W )

R(a1 + a3)

D =
a3(W +R)

S(a1 + a2)
.

Let function L(m,n) be the convex function, then the Kuhn–Tucker con-
ditions for problem (9) are as follows:

R(a1 +
a3
n
)− a2

m2
(W + nS)− λ1 = 0

S(a1 +
a2
m

)− a3
n2

(W +mR)− λ2 = 0

m− 1 ≥ 0

n− 1 ≥ 0

λ1(m− 1) = 0

λ2(n− 1) = 0

λ1 ≥ 0, λ2 ≥ 0.

(21)

Let us denote

λ1(m,n) = R(a1 +
a3
n
)− a2

m2
(W + nS),

λ2(m,n) = S(a1 +
a2
m

)− a3
n2

(W +mR).
(22)

Recall that a2 > 0, a3 > 0. The condition λ1(1, 1) > 0 is equivalent to
the condition C < 1 and similarly λ2(1, 1) > 0 ⇔ D < 1. If λ1(1, 1) >
0(⇔ C < 1) and λ2(1, 1) > 0(⇔ D < 1) then

m = 1

n = 1

λ1 = λ1(1, 1) > 0

λ2 = λ2(1, 1) > 0

17



satisfy the Kuhn–Tucker conditions (21). If λ1(1, 1) > 0(⇔ C < 1) and
λ2(1, 1) ≤ 0(⇔ D ≥ 1) then consider

λ1(1,
√
D) = (Ra1 −Wa2)(1 +

S

W +R

√
D).

If Ra1 −Wa2 > 0(⇔ A < 1) then
m = 1

n = N(1) =
√
D

λ1 = λ1(1,
√
D) > 0

λ2 = 0

satisfy the Kuhn–Tucker conditions (21). If Ra1 − Wa2 < 0(⇔ A > 1)
then {

C < 1

A > 1
⇔


(Wa2 −Ra1)︸ ︷︷ ︸

>0

+(Sa2 −Ra3) < 0

A > 1

⇒

{
Sa2 −Ra3 < 0

A > 1
⇔

{
A
B < 1

A > 1
⇒ 1 < A < B ⇒ B > 1

which means that 
m =

√
A

n =
√
B

λ1 = λ1(
√
A,

√
B) = 0

λ2 = λ1(
√
A,

√
B) = 0

satisfy the Kuhn–Tucker conditions (21). In the same way, if If λ1(1, 1) ≤
0(⇔ C ≥ 1) and λ2(1, 1) ≤ 0(⇔ D ≥ 1) then Let Sa2 −Ra3 > 0 then{

D ≥ 1

Sa2 −Ra3 > 0
⇔


(Wa3 − Sa1)− (Sa2 −Ra3)︸ ︷︷ ︸

>0

≥ 0

A > B

⇒

{
Wa3 − Sa1 ≥ 0

A > B
⇒

{
B ≥ 1

A > B
⇒

{
A ≥ 1

B ≥ 1
.

Let Sa2 −Ra3 < 0 then{
C ≥ 1

Sa2 −Ra3 < 0
⇔


(Wa2 −Ra1) + (Sa2 −Ra3)︸ ︷︷ ︸

<0

≥ 0

A < B

⇒

{
Wa2 −Ra1 ≥ 0

A < B
⇒

{
A ≥ 1

A < B
⇒

{
A ≥ 1

B ≥ 1
.
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In any case 
m =

√
A

n =
√
B

λ1 = λ1(
√
A,

√
B) = 0

λ2 = λ1(
√
A,

√
B) = 0

satisfy the Kuhn–Tucker conditions (21). We obtain that

• If C < 1, D < 1 then m = 1, n = 1

• If C < 1, D ≥ 1 then

– If A < 1, then m = 1, n =
√
D

– If A ≥ 1, then B ≥ 1 and m =
√
A,n =

√
B

• If C ≥ 1, D > 1 then

– If B < 1, then m =
√
C, n = 1

– If B ≥ 1, then A ≥ 1 and m =
√
A,=

√
B

• If C ≥ 1, D ≥ 1 then A ≥ 1, B ≥ 1 and m =
√
A,n =

√
B.

2. Consider now concavity of the function L(m,n). As a result we have:

∂2L

∂m2
=

2a2(W + nS)

m3
> 0,

∂2L

∂n2
=

2a3(W +mR)

n3
> 0.

D(m,n) =

∣∣∣∣∣ ∂2L
∂m2

∂2L
∂m∂n

∂2L
∂n∂m

∂2L
∂n2

∣∣∣∣∣ = 4a2a3W (W + nS +mR)

m3n3
−
(Ra3

n2
−Sa2

m2

)2
≥ 0

at point (m∗, n∗) = (
√

Wa2

Ra1
,
√

Wa3

Sa1
) and at some epsilon neighborhood

of this point. It means that L(m,n) is concave at least at some epsilon
neighborhood of (m∗, n∗).

3. Now we prove that L(m,n) is quasi convex. Bordered Hessians are equal
to

B1(m,n) =

∣∣∣∣ 0 ∂L
∂m

∂L
∂m

∂2L
∂m2

∣∣∣∣ = −
(
∂L

∂m

)2

≤ 0

B2(m,n) =

∣∣∣∣∣∣
0 ∂L

∂m
∂L
∂n

∂L
∂m

∂2L
∂m2

∂2L
∂m∂n

∂L
∂n

∂2L
∂n∂m

∂2L
∂n2

∣∣∣∣∣∣ = −
(
∂L

∂m

)2
2a3(W +mR)

n3
−

−
(
∂L

∂n

)2
2a2(W + nS)

m3
− 2

∂L

∂m

∂L

∂n

(
Ra3
n2

+
Sa2
m2

)
= −2(W + nS +mR)·

·

(
a1

(
Ra3
n2

− Sa2
m2

)2

+
a2
m

(
Sa1
m

− Wa3
mn2

)2

+
a3
n

(
Ra1
n

− Wa2
nm2

)2
)

< 0,
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if m ̸= m∗, n ̸= n∗. But at (m∗, n∗) the function L(m,n) is convex. This
means that L(m,n) is quasi convex at m > 0, n > 0.

4. And now we verify conditions from the following theorem: Theorem, Ar-
row and Enthoven, 1961[3]. Let f(x) be a differentiable quasi-convex func-
tion of the n-dimensional vector x, and let g(x) be an m-dimensional dif-
ferentiable quasi-convex vector function, both defined for x0. Let x0 and λ0

satisfy the Kuhn–Tucker–Lagrange conditions, and let one of the following
conditions be satisfied:

a) fxi0
> 0 for at least one variable xi0 ;

b) fxi1
< 0 for some relevant variable xi1 ;

c) fx ̸= 0 and f(x) is twice differentiable in the neighborhood of x0;

d) f(x) is convex.

then x0 minimizes f(x) subject to the constraints g(x) ≤ 0, x > 0. If
m∗ ≥ 1, n∗ ≥ 1 then (m∗, n∗) satisfies (21) with λ1 = 0, λ2 = 0. The

condition d) is fulfilled. If m∗ ≥ 1, n∗ < 1 then (
√

a2(W+S)
R(a1+a3)

, 1) satisfies

(21) with λ1 = 0, λ2 > 0. The condition a) is fulfilled: λ2(
√
C, 1) = ∂L

∂n >
0. Let m∗ < 1, n∗ < 1 and λ1(1, 1) ≥ 0, λ2(1, 1) ≥ 0 then m = 1, n = 1.
The condition c) is fulfilled.

5. Substituting (
√
A,

√
B) into L(m,n) we obtain:

L(
√
A,

√
B) =

√
2d(
√
Wa1 +

√
Ra2 +

√
Sa3) = L2

and in the same way

L(1, 1) =
√
2d(W +R+ S)(a1 + a2 + a3) = L3

L(
√
C, 1) =

√
2d(
√
(W + S)(a1 + a3) +

√
Ra2) = L1

L(1,
√
D) =

√
2d(
√
(W +R)(a1 + a2) +

√
Sa3) = L4

Appendix B

Property 1. The functions A(α), C(α) are positive and decreasing; if α ∈
(0, 1), the functions B(α), D(α) are positive and increasing, if α ∈ (0, 1).

Proof. The functions A(α) and B(α) are obviously positive at any α ∈ (0, 1).
The function A(α) is decreasing on (0, 1), if for any α ∈ (0, 1) : A′(α) < 0. The
latest is true:

A′(α) = −W (h+ u)

ru

1

α2
< 0, α ∈ (0, 1).
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It can be shown in the same way that B′(α) > 0, if α ∈ (0, 1). Hence B(α) in-
creases on (0, 1). To prove that C(α) is positive on (0, 1) consider the inequality
C(α) > 0. Let u > h then u

u−h > 1. Then C(α) > 0, if α ∈ (0, 1)∪(1, u
u−h ). Let

u < h then u
u−h < 0. Then C(α) > 0, if α ∈ (−∞, u

u−h ) ∪ (0, 1) ∪ (0,+∞). In
both cases C(α) > 0 on (0, 1). To prove C(α) decreases, consider the inequality
C ′(α) < 0 we obtain:

(W + s)(h+ u)

r

(α− 1)(u+ α(2h− u))

α2(u+ α(h− u))2
< 0.

There are three cases: if u > 2h then α ∈ (−∞, 0) ∪ (0, 1) ∪ ( u
u−2h ,

u
u−h ) ∪

( u
u−h ,+∞), if 2h > u > h then α ∈ ( u

u−2h , 0) ∪ (0, 1), if h > u then α ∈
( u
u−2h , 0) ∪ (0, 1). In any case C ′(α) < 0 on (0, 1). This means that C(α)

decreases on (0, 1). It can be shown in the same way that D(α) is positive and
the derivative

D′(α) =
(W + r)h

s

α(2(u+ h)− α(u+ 2h))

(1− α)2(u+ h− αh)2
> 0

at any α ∈ (0, 1). Hence D(α) increases on (0, 1).

Property 2. Each of the equations A(α) = 1, B(α) = 1, C(α) = 1, D(α) = 1
has a unique solution α1, α2, α3, α4, correspondingly, if α ∈ (0, 1):

α1 =
W (h+ u)

ru+W (h+ u)
,

α2 =
su

su+Wh
,

α3 =

{
1
2

2(W+s)(h+u)+ru−
√

4hr(W+s)(h+u)+r2u2

(W+s)(h+u)−r(h−u) , (W + s)(h+ u)− r(h− u) ̸= 0
h−u
2h+u , (W + s)(h+ u)− r(h− u) = 0

,

α4 =

{
1
2

−s(u+2h)+
√

4hs(W+r)(h+u)+u2s2

h(W+r−s) , W + r − s ̸= 0
u+h
u+2h , W + r − s = 0

.

Proof. The proof is simply to prove that α1 is the unique solution of the equation
A(α) = 1 and α2 is the unique solution of the equation B(α) = 1. Consider the
equation C(α) = 1. It is equivalent to:

((W + s)(h+ u)− r(h− u))α2 − (2(W + s)(h+ u) + ru)α+ (W + s)(h+ u))

rα(u+ α(h− u))
= 0.

If (W + s)(h+ u)− r(h− u) ̸= 0, the numerator has two roots:

α1
3 =

1

2

2(W + s)(h+ u) + ru+
√
4hr(W + s)(h+ u) + r2u2

(W + s)(h+ u)− r(h− u)
,

α2
3 =

1

2

2(W + s)(h+ u) + ru−
√
4hr(W + s)(h+ u) + r2u2

(W + s)(h+ u)− r(h− u)
.

21



We simply show that if (W + s)(h + u) − r(h − u) > 0 then α1
3 > 1 and if

(W + s)(h+ u)− r(h− u) < 0 then α1
3 < 0. Regardless of whether (W + s)(h+

u)−r(h−u) is positive or not, α2
3 ∈ (0, 1). If (W +s)(h+u)−r(h−u) = 0 then

the numerator has the unique solution α0
3 = h−u

2h+u . It is obvious that α
0
3 < 1. It

is necessary to prove that α0
3 > 0. From (W + s)(h+u)− r(h−u) = 0 it follows

that u = W+s−r
W+s+rh < h. Hence α0

3 > 0, which is our proof. The denominator
has two roots α = 0 and α = u

u−h . Neither root is in interval (0, 1). Thus it
was proved that the equation C(α) = 1 has a unique solution on (0, 1), which
is equal to

α3 =

{
1
2

2(W+s)(h+u)+ru−
√

4hr(W+s)(h+u)+r2u2

(W+s)(h+u)−r(h−u) , (W + s)(h+ u)− r(h− u) ̸= 0
h−u
2h+u , (W + s)(h+ u)− r(h− u) = 0

.

The roots of the equation D(α) = 1 can be found in the same way.

Property 3. The functions A(α) and C(α) have two common points, if α ∈
(0, 1]: (1, 0) and (α2,

W 2h(h+u)
rsu2 ); moreover: A(α) ≥ C(α), if α ∈ [α2, 1], A(α) <

C(α), if α ∈ (0, α2). The functions B(α) and D(α) have two common points,

if α ∈ [0, 1): (0, 0) and (α1,
W 2h(h+u)

rsu2 ); moreover: B(α) ≥ D(α), if α ∈ [0, α1],
B(α) < D(α) if α ∈ (α1, 1).

Proof. According to Property 1, A(α) and C(α) are both decreasing functions.
Consider the following inequality:

A(α) ≥ C(α) ⇔ (1− α)(α(us+ hW )− us)

uα(u+ α(h− u))
≥ 0.

If u > h then α ∈ (−∞, 0)∪[ us
us+hW , 1]∪( u

u−h ,+∞). If u < h then α ∈ ( u
u−h , 0)∪

[ us
us+hW , 1]. Hence, if α ∈ (0, 1) then A(α) ≥ C(α) on [ us

us+hW , 1] = [α2, 1], which
was to be proved. This can be obtained in the same way as B(α) ≥ D(α), if
α ∈ [0, α1].

Property 4. The equations A(α) = B(α) and C(α) = D(α) have unique so-
lutions α∗ and α∗∗, correspondingly. Moreover, if C(α∗∗) > 1 then A(α∗) > 1,
if C(α∗∗) < 1 then A(α∗) < 1, if C(α∗∗) = 1 then A(α∗) = 1 and α∗ = α∗∗,
where

α∗ =

√
(h+u)s

ru

1 +
√

(h+u)s
ru

A(α∗) = B(α∗) =
W

u

√
h(h+ u)

rs

(23)

Proof. Consider the following equation:

A(α) = B(α) (24)
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It has a unique solution since A(α) is positive and monotonously decreasing and
B(α) is positive and monotonously increasing for α ∈ (0, 1). Now, let α∗ be the
rate at which (24) holds. The value of α∗ is obviously equal

α∗ =

√
(h+u)s

ru

1 +
√

(h+u)s
ru

and is positive and less than one. Furthermore,

A(α∗) = B(α∗) =
(s1 − s+ r1 − r)

u

√
h(h+ u)

rs
=

W

u

√
h(h+ u)

rs
.

Function C(α) is positive and monotonously decreasing for α ∈ (0, 1). Since
C(1) = 0 and limα→0 C(α) = +∞, then the range of values that the func-
tion C(α) can take is an interval [0,+∞). D(α) is positive and monotonously
increasing for α ∈ (0, 1) with the range of values [0,+∞). This means that
equation C(α) = D(α) has a unique solution if α ∈ (0, 1) and curves C(α) and
D(α) have one intersection point if α ∈ (0, 1). Recall that α = α∗ if (24) holds.
Denote by α∗∗ the solution of C(α) = D(α), if α ∈ (0, 1). It can be proved that
if C(α∗∗) > 1 then A(α∗) > 1 and if C(α∗∗) < 1 then A(α∗) < 1. At first we
prove that {

C ≥ 1

D ≥ 1
⇒

{
A ≥ 1

B ≥ 1.

For example, let Sa2 −Ra3 ≥ 0 ⇔ A > B then


C ≥ 1

D ≥ 1

A > B

⇔



(Wa2 −Ra1) + (Sa2 −Ra3)︸ ︷︷ ︸
≥0

≥ 0

(Wa3 − Sa1)− (Sa2 −Ra3)︸ ︷︷ ︸
≥0

≥ 0

A > B

⇒

{
Wa3 − Sa1 > 0

A > B
⇒

{
B > 1

A > B
⇒ A > B > 1.

It can be proved that if Sa2 − Ra3 < 0 then B > A > 1. In the same way it
can be proved that {

C < 1

D < 1
⇒

{
A < 1

B < 1.

We obtain that if at some ᾱ ∈ (0, 1), A(α) > 1 and B(α) > 1 then A(α∗) =
B(α∗) > 1. If this is not so, for example A(ᾱ) > B(ᾱ) > 1 > A(α∗) =
B(α∗), α∗ < ᾱ then A(α) and B(α) are both increasing functions, which is
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not true. Consequently, if C(α∗∗) = D(α∗∗) > 1 then A(α∗) = B(α∗) > 1
and if C(α∗∗) = D(α∗∗) < 1 then A(α∗) = B(α∗) < 1. Now to prove that if
C(α∗∗) = 1 then A(α∗) = 1. Let C(α∗∗) = 1 then at α = α∗:{

C = a2(S+W )
R(a1+a3)

= 1

D = a3(W+R)
S(a1+a2)

= 1.
(25)

If a2S = a3R then from (25) it follows that{
A = Wa2

Ra1
= 1

B = Wa3

Sa1
= 1.

If a2S > a3R then from (25) it follows that{
A = Wa2

Ra1
< 1

B = Wa3

Sa1
> 1,

(26)

and from a2S > a3R it follows that A > B, which conflicts with (26). This
means that if α = α∗∗ then a2S = a3R, A = B = C = D = 1 and α∗ = α∗∗.
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Figure 3: Example 1

Figure 4: Example 2
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