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Abstract
Methods of Statistical Process Control (SPC) are used for detecting
deviations from regular processing. SPC is applied in manufactur-
ing implementations where statistical tools are used to monitor the
performance of production processes in order to identify and correct
considerable changes in the process performance. Today, SPC meth-
ods are incorporated by organizations around the world as a suitable
tool to improve product quality by reducing process variation. The
current method of SPC is the application of control charts which are
used to monitor process parameters (e. g., mean µ, standard devia-
tion σ or percent defective p) over time. Well-established control chart
schemes are, amongst others, exponentially weighted moving average
charts (EWMA), cumulative sum charts (CUSUM) or, of course, the
classical Shewhart charts. In this article, an EWMA control chart for
variables calculating the percent defective p = f(µ, σ) will be presented
where both process parameters are under risk to change. The scheme
will be compared to several other control chart applications (EWMA X̄,
EWMA X̄-S2, and an alternative EWMA p chart). Numerical methods
and Monte Carlo simulations are used for computing the average run
length (ARL) as the measure of performance.

Keywords: SPC, ARL, control chart for variables, percent defective
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1 Introduction

The objective of Statistical Process Control (SPC) is the utilization of statistical meth-
ods in order to monitor and improve processes. In addition to the academic discussion
on methods of this part of applied statistics, it has a high level of relevancy for prac-
tice. Thus, these methods are applied for inspecting production or service processes in
industry and economy alike.
Typically, the application of these methods is carried out by control charts. The con-

cept of control charting dates back to the early 20th century when Walter A. Shewhart
laid its basis. Shewhart developed a control chart for monitoring the percent defective of
a manufacturing process called p chart. Essentially, the inspection of the percent defec-
tive is made under sampling by attributes. On the basis of a sample, an estimator of the
current percent defective is plotted into a control chart which is kept under surveillance
over time.
The general idea of operating a control chart consists of signaling an alarm if par-

ticularly specified thresholds (control limits) are exceeded. An alarm usually leads to
stopping the process in order to eliminate the reasons for changes in the relevant process
parameters. Characteristic of Shewhart type control charts is the feature of only taking
the most recent sample into account. Therefore, Shewhart control charts perform very
well when it comes to the detection of large changes in the process parameters.
The further development of the control chart fundamentals has progressed rapidly and

a lot has been done since Shewhart introduced his original idea. Thus, numerous en-
hancements of the p chart exist to monitor other process parameters. Common schemes
are charts inspecting the process mean µ (e. g., X̄ chart) or the standard deviation σ

(e. g., S chart). In these charts, the process parameters are usually monitored by their
estimators X̄ and S, respectively. In addition, new approaches were developed besides
the Shewhart concept. In particular, control charts that take previous samples into ac-
count, have relevancy for both theory and practical application. This property leads to
a better performance in case of small changes in the process parameters. For example,
an exponentially weighted moving average scheme (EWMA: Roberts, 1959; Crowder,
1987; Lucas and Saccucci, 1990), or the cumulative sum chart (CUSUM: Page, 1954),
were introduced. Other extensions deal with the type of parameter that is subject of
inspection. While the popular p chart uses sampling by attributes, the X̄ chart uses
sampling by variables. By now, there are several combinations of control charts of, e. g.,
Shewhart, EWMA or CUSUM type, each for attributes or variables.
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Krumbholz and Zöller (1995) introduced a newly designed p chart. In contrast to
Shewhart’s original idea, the percent defective is not sampled by attributes but by
variables. Therefore, the percent defective is expressed as functional relationship of the
mean and the standard deviation, p = f(µ, σ), which is inspected over time. The basic
idea is to monitor both mean and standard deviation simultaneously by a single statistic
and in this way by a single control chart. The typically one-sided p chart under sampling
by variables uses only one design parameter (control limit) and signals an alarm as the
estimator of p exceeds the specified control limit. Thus, the interpretation of the statistic
and the control limit in terms of the percent defective can be intuitively and easily be
done.
Knoth and Steinmetz (2013) extended the idea of monitoring the functional relation-

ship p = f(µ, σ) and transferred it to the EWMA control chart concept. As a first step,
they applied an EWMA p chart only to monitor changes in the process parameter µ
through the lens of its yield impact. Here, the standard deviation σ is assumed to be
known and constant. Effects of a change in the location parameter on the performance
of the control chart are analysed. Thereby, the average run length (ARL) is used as a
measure of performance and several control chart schemes are compared to each other.
Steinmetz (2014) studied the EWMA p chart, where σ is still assumed to be known for
setting up the chart, changes in both process parameters µ and σ are now taken into
account and the correspondingly changed ARL is deployed for comparing with other
EWMA schemes.
Intention of the present paper is to apply the EWMA p idea to a more realistic sce-

nario. It will be compared to well established EWMA control chart schemes and an
alternative EWMA p approach. The previous EWMA p chart will be extended by a
design using both estimators X̄ and S. For the case that both parameters changed, this
chart is expected to perform better than the simpler version. After a short introduction
to performance measurement of control charts and the basic approach of the EWMA p

chart, the paper will focus on the opposing schemes and the mutual performance compar-
isons. For illustration reasons, the differences in the performance will be presented using
both ARL tables and graphical ARL profiles. For the ARL computations, numerical
methods as well as Monte Carlo simulations are applied.
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2 Performance measurement

Within control chart applications, the question of performance measurement is om-
nipresent. Nowadays, various approaches are available to compare different control
charts in terms of their performance. Here, the ARL concept will be used. Within
ARL considerations, the in-control and the out-of-control case is distinguished. Let ` be
the random number of observations or samples until the control chart stops and there-
fore signals an alarm. While L0 is denoted as the average number of observations or
samples until the control chart signals the first false alarm (the process is actually still
under control), L1 expresses the average number of observations or samples until the
first correct alarm occurs. For a process with given ideal (in-control) process parameters
µ0 and σ0, the ARL is defined as

ARL =

L0 = E∞(`), in-control case µ = µ0, σ = σ0

L1 = E1(`), out-of-control case µ 6= µ0 ∨ σ 6= σ0 .

Thereby, the more general Em(`) denotes the expected value of the run length ` for a
particular change pointm which is unknown but fixed and not random. The parameterm
marks the point in time when either µ, σ or both parameters change. Solely utilizing the
ARL is more specific, because only two extreme change point positions are considered,
m = 1 (instant change) and m =∞ (no change).
Because both process parameters can have an effect on the ARL, one can express

the ARL as a function of µ and σ, Lµ,σ. Within this paper, results are based on ARL
computation using Monte Carlo simulations, the Markov chain approach (Brook and
Evans, 1972; Lucas and Saccucci, 1990), and the collocation method (Knoth, 2005).

3 EWMA p chart design and properties

Based on the idea of Krumbholz and Zöller (1995) and merged with the general idea of
EWMA control charts, an EWMA p chart under sampling by variables was introduced
by Knoth and Steinmetz (2013) and more thoroughly studied by Steinmetz (2014). The
chart keeps advantages of monitoring continuous data and observing p as a function of
µ and σ. Thus, the EWMA p chart is also able to check µ and σ simultaneously by only
one statistic which can be intuitively interpreted. So far, only the mean was estimated
by X̄ and the standard deviation σ was still assumed to be known. Within this paper,
the model will be extended by utilizing both parameters estimates, now.
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3.1 Setup

Continuing the explanations above, one can introduce a more general EWMA p chart.
The model will be modified in order to analyze the influence of both changes in mean
and standard deviation.
Let X ∼ N (µ, σ2) be an iid characteristic with certain in-control values µ0 and σ0.

Samples of size n are taken at time i = 1, 2, . . . The sample mean is calculated by
X̄i = 1/n∑n

j=1Xij with variance V ar(X̄i) = σ2/n. The sample variance is given by
S2
i = 1/(n− 1)∑n

j=1(Xij− X̄i)2. Φ and Φ−1 denote the cumulative distribution function
(cdf) of the standard normal distribution and its inverse. Lower (LSL) and upper (USL)
specification limits in terms of X are given, LSL < USL. As already Krumbholz and
Zöller (1995) mentioned, the percent defective p can be determined by:

p = h(µ, σ) = Φ
(
LSL− µ

σ

)
+ Φ

(
µ− USL

σ

)
. (1)

For applying EWMA, an estimator of p has to be used, where process parameters µ and
σ are replaced by their estimators X̄ and S. The estimator p̂ is finally given by

p̂i = h(X̄i, Si) = Φ
(
LSL− X̄i

Si

)
+ Φ

(
X̄i − USL

Si

)
,

which is considerably biased. Given the simple USL = 3 = −LSL, one obtains, indeed,
for the in-control target h(µ0 = 0, σ0 = 1) = 0.0027 the expectation E∞(p̂i) = 0.0133.
The EWMA sequence is defined by

Zp
i = (1− λ)Zp

i−1 + λp̂i ,

where 0 < λ ≤ 1 specifies the usual EWMA weight parameter. It is initialized with a
starting value of Zp

0 = p0 = h(µ0, σ0) which represents the in-control case. Because only
increasing p resembles deteriorated process quality, the EWMA p chart signals an alarm
if Zp

i > cE,p. Thus, the run length `E,p is given by

`E,p = inf
{
i ∈ N : Zp

i > cE,p
}
.

The control limit cE,p is deployed for calibration at µ0 = 0, σ0 = 1 (in-control), and
the ARL is considered for situations of changed true process parameters µ and σ. The
question is what impact a change would have on the performance of the control chart if
certain changes in the process parameters occurred. The ARL results presented for the

5



EWMA p chart using X̄ and S2 are based on applying collocation to the ARL integral
equation following Knoth and Steinmetz (2013). For details see the Appendix.

3.2 Distribution of p̂

For ARL computation using the Markov chain approach, the cdf of p̂ is required. Thus,
the cdf of p̂ in case of unknown (and hence estimated) mean and standard deviation is
derived from the input given by Bruhn-Suhr and Krumbholz (1990) and Krumbholz and
Zöller (1995). Let 0 < p < 1. Set

µ∗ = LSL+ USL

2 and σ∗p = LSL− USL
2Φ−1(p2) .

The authors pointed out that for any σ with 0 < σ ≤ σ∗p there is exactly one µ = µp,σ ≥
µ∗ and one µ̃ = µ̃p,σ ≤ µ∗ that conform to h(µp,σ, σ) = h(µ̃p,σ, σ) = p. By symmetry, it
follows that

µ̃p,σ = µ∗ − (µp,σ − µ∗) = 2µ∗ − µp,σ and µp,σ∗p = µ∗ .

Let the cdf of p̂ in case of unknown µ and σ be denoted by

Fp̂(p) = P (p̂ ≤ p) = P
(
h(X̄, S) ≤ p

)
.

Bruhn-Suhr and Krumbholz (1990) derived

Fp̂(p) =
α∫

0

{
Φ
(
µp,σ̃ − µ

σ

√
n
)
− Φ

(
µ̃p,σ̃ − µ

σ

√
n
)}

χ2
n−1(x) dx (2)

with α = α(p) = n− 1
σ2

(LSL− USL)2

4
1

(Φ−1(p2))2 and σ̃ = σ̃(x) = σ

√
x

n− 1 ,

where χ2
n−1 denotes the probability density function (pdf) of the χ2 distribution with

n − 1 degrees of freedom. Figure 1 illustrates the shapes of the cdf and pdf of p̂ for
selected values of σ. The cdf Fp̂(p) is used for ARL computation of EWMA p charts
applying the Markov chain approximation and, quite unusual, the collocation approach
– see the Appendix for more details.
For applying numerical algorithms like the Nyström method or the common collocation

approach to solve the ARL integral equation (Crowder, 1987, introduced it for the
EWMA X̄ chart), one usually deploys the pdf of X̄, S2 or p̂. Differentiating Fp̂(p) in
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Figure 1: Distribution of p̂ = h(X̄, S): Cumulative distribution function (cdf) and den-
sity function (pdf) for n = 5, µ = 0, σ ∈ {0.7, 1, 1.3}, and USL = 3 = −LSL.

(2) with respect to p and utilizing some arithmetics yields the following formula:

fp̂(p) =
∫ α

0

√
n/σ

h′(µp,σ̃, σ̃)

[
ϕ
(
µp,σ̃ − µ

σ

√
n
)

+ ϕ
(−µp,σ̃ − µ

σ

√
n
)]
χ2
n−1(x) dx . (3)

Thereby, ϕ() denotes the pdf of the standard normal distribution and h′(µ, σ) stands
for the derivative of h(µ, σ) with respect to µ. Both integrals, in (2) and (3), are
calculated with Gauß-Legendre quadrature. Note the unpleasant behavior of the pdf,
fp̂(p), at p = 0 – it is unbounded and considerably steep, cf. Figure 1. The subsequent
numerical problems while calculating the collocation definite integrals are treated by
partial integration ending up again at the cdf (see Appendix).

4 Competing control chart schemes

4.1 EWMA X̄ chart

The first analyzed scheme besides EWMA p is the ordinary EWMA X̄ chart. It was
introduced by Roberts (1959) and represents an extension of the classical X̄ chart for
monitoring the process mean. It has been examined in several papers such as Crowder
(1987) or Lucas and Saccucci (1990) amongst others. With weight parameter λX (0 <
λX ≤ 1), the EWMA X̄ sequence at time i is given by ZX

i = (1− λX)ZX
i−1 + λXX̄i. For
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i→∞, the variance of ZX
i follows σ2

ZX
∞

= σ2/n
(

λX

2−λX

)
. The run length of this EWMA

control chart is then defined by its stopping time

`E,X = inf
{
i ∈ N : |ZX

i − µ0| > cE,XσZX
∞

}
,

where cE,X is a constant design parameter. Moreover, ZX
0 = µ0 is the center line of

the control chart and the initial value of the EWMA sequence. For the performance
comparison, the above two-sided EWMA X̄ control chart for various values of λX is
utilized. Critical values cE,X are each calibrated for µ0 = 0 and σ0 = 1 leading to
L0 = 370.4.
Even though the ordinary EWMA X̄ is usually not set up for detecting changes in

the standard deviation, it reacts on these changes in an appropriate way.

4.2 EWMA X̄-S2 charts

There are certain schemes monitoring mean and variance simultaneously – see Domangue
and Patch (1991) for the so-called omnibus charts, Gan (1995) for combined EWMA
X̄-lnS2 control charts or Reynolds Jr. and Stoumbos (2001a,b, 2004) who presented
some ARL studies. Here, the EWMA X̄-S2 scheme is applied – see Knoth (2007)
and references therein for ARL calculation methods of adequate accuracy. The scheme
is based on two simultaneous EWMA sequences. While the two-sided mean chart is
implemented as in Section 4.1, the EWMA S2 chart is applied with weight parameter
λS (0 < λS ≤ 1) and starting value ZS

0 = σ2
0. Thus, the EWMA sequence of the variance

chart at time i is given by ZS
i = (1−λS)ZS

i−1 +λSS
2
i . The run length of the EWMA X̄-

S2 scheme with a one-sided variance chart is finally defined by `E,XS = min
{
`E,X , `E,S

}
following

`E,X = inf
{
i ∈ N : |ZX

i − µ0| > cE,XσZX
∞

}
,

`E,S = inf
{
i ∈ N : ZS

i − σ2
0 > cE,S(u)σZS

∞

}
,

where cE,X and cE,S(u) are the design parameters of the EWMA X̄ chart and the one-sided
(upper) EWMA S2 chart. Note that both designs use thresholds written as multiples of
the asymptotic standard deviation of the corresponding EWMA sequence.
Another opponent is an EWMA X̄-S2 scheme with a two-sided variance chart which
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is defined as follows:

`E,S = inf
{
i ∈ N : ZS

i − σ2
0 /∈ [−cE,S(l)σZS

∞
, cE,S(u)σZS

∞
]
}
.

Here, cE,S(l) denotes the design parameter of the lower EWMA S2 chart. Contrary to
the EWMA X̄ chart, the control limits design is not symmetric anymore. Therefore,
the concept of ARL unbiased charts is used – see, for example, Knoth (2007) for more
details. The numerical algorithms which are presented in the same paper and which
are implemented in the R package spc, are utilized to obtain the ARL results for both
EWMA X̄-S2 designs.

4.3 Alternative EWMA p chart

Merging the ideas of an EWMA p chart and simultaneously calculating the EWMA X̄-
S2 sequences, an alternative EWMA p chart can be introduced. Referring to Section 4.2,
the two EWMA statistics ZX

i and ZS
i are put into (1):

p̂alti = h(ZX
i , Z

S
i ) .

Again, if p̂alti becomes large, the percentage defective level will be certainly increased.
Thus, the run length `altE,p is defined as

`altE,p = inf
{
i ∈ N : p̂alti > caltE,p

}
.

Unfortunately, numerical calculation of the ARL is almost infeasible, so that its ARL
analysis is performed exclusively with Monte Carlo simulations (108 repetitions).

5 Comparison

In this section, the different EWMA schemes will be compared to each other in case
of changing mean and standard deviation. Thus, Table 1 shows the ARL results for
various values of λ and changes in µ and σ. Each scheme is set up with a critical
value calibrated for the in-control situation (L0 = 370.4, µ0 = 0, σ0 = 1), n = 5 and
USL = 3 = −LSL. In each case, the values of λ are chosen equally for the compared
schemes. An optimization of λ regarding a quick detection of a specific change in one
or both process parameters was purposely not done, here. At the bottom of Table 1,
the special case λ = 1 is presented which stands for the Shewhart type of chart. The
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numerical ARL computations of the different schemes were done with the R package spc,
version 0.5.0 and adequate extensions. The Monte Carlo simulations (108 replications)
for the alternative EWMA p chart were implemented in C. The EWMA charts under
consideration were introduced in Sections 3.1, 4, augmented by the simpler EWMA
p chart studied in Steinmetz (2014) that assumes known variance. In Figure 2, the
percentage defective is added as function of σ and the four different µ. They gray
bullets mark the in-control value p0 = h(µ0, σ0).
Figure 2 and Table 1 quickly leads to the finding that for µ 6= µ0 the more general

EWMA p scheme behaves worse than the simpler version which implies fixed and known
variance. Surprisingly, this can already be observed for small shifts such as µ1 = 0.25 in
Figure 2 (b). However, taking the yield impact of changes in µ and σ seriously means
that a yield oriented control chart should not flag for µ = µ1 = 0.25 as long as the
standard deviation is smaller than 1.05. The two here introduced EWMA p schemes
behave quite similarly with some advantages for the alternative one. For µ = µ0, the
aforementioned two EWMA p charts and the EWMA X̄-S2 (upper) exhibit the best
behavior, while the other fall behind. For all other µ values, the first two chart types
become worse than the competitors. Their ARL profiles are agreeable, at least for the
small shift in Figure 2 (b). Given the patterns in Figure 2, one would recommend the
EWMA X̄-S2 (upper) scheme. All other schemes display certain weaknesses. Besides
the actual performance of the EWMA p chart, one has to keep in mind the manageable
effort of implementing this scheme. This point can still be a good argument for practical
application of the EWMA p chart in comparison with more complex approaches.
The EWMA X̄, which is not originally set up to detect changes in σ, does not perform

unexpectedly. Referring to the results of Steinmetz (2014), EWMA X̄ outperforms its
rivals in case of isolated changes in mean and almost stable in-control standard devia-
tion. Here, the advantages of a single mean chart prevail which leads to top results in
ARL performance considerations. Not surprisingly, the picture turns in case of isolated
changes in the standard deviation and stable in-control mean. Here, EWMA X̄ performs
worst. Basically, the performance of this scheme becomes better as the change in mean
increases. These findings are underlined by Figures 2 (c), (d). Here, the EWMA X̄

scheme proceeds in a more and more flat curve shape and an excellent change detection
regarding mean along both increasing and decreasing σ.
According to the ARL results in Table 1, the two different EWMA X̄-S2 schemes

with either one- or two-sided variance chart perform mediocrely compared to the other
control charts. The bigger the change in σ, the more an application of the S2 chart pays
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Figure 2: ARL profiles for λ = 0.1 and changes in µ and σ. The legend in the top-left
diagram displays the color coding. Note that the bold solid line marks the
profile of the more general EWMA p chart, while the thin one represents the
EWMA p scheme focusing on changes in µ.

off. In case of isolated changes in the standard deviation and almost stable in-control
mean, the scheme with one-sided S2 chart outperforms its two-sided opponent. Apart
from that, both schemes are almost equal in case of big changes in mean – differences
in the performance dissolve.
The newly introduced alternative EWMA p chart instantly surprises with its suitable

performance. Table 1 shows that the alternative EWMA p chart performs well in case
of isolated and big changes in the standard deviation and stable in-control mean. Here,
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the new scheme provides better ARL values than all of its opponents. The advantages
of quickly detecting deteriorating standard deviation decrease by an increasing change
in mean. When it comes to increasing changes in mean, the classical EWMA X̄ and the
two EWMA X̄-S2 schemes have better ARL performances. In this case, the two EWMA
p charts do not differ significantly – see Figure 2 for increasing and decreasing standard
deviation, specific changes in mean and fixed λ = 0.1. For increasing EWMA weight
parameter λ, the ARL values of the two EWMA p charts converge. Thus, it follows
from Section 3.1 and Section 4.3 that both schemes are equivalent in the Shewhart case
(λ = 1) – slight inaccuracies in case of Monte Carlo simulations excepted. Note that
only for the alternative EWMA p Monte Carlo simulations were utilized, while for the
Shewhart chart based on h(X̄i, Si) the cdf Fp̂() given in (2) was applied.
Apart from the mentioned relationship between the two EWMA p schemes and an

increasing value of λ, Table 1 carves out that the choice of λ does not have a big impact
on the (relative) performance of the different schemes. Thus, the differences of the
applied schemes regarding their ARL performance is predominantly independent from
the chosen value of λ.
Following Krumbholz and Zöller (1995) and their OC bands, we want to illustrate the

issue that different µ-σ combinations fulfill p = h(µ, σ), so that the ARL as function of
the actual percentage defective p is not uniquely defined anymore. For λ = 0.1 and in-
control ARL 370.4, the resulting ARL band of the EWMA p chart is shown in Figure 3.
The lower limit of the band relates to the largest possible σ = σ∗p depending on p, while
the upper one corresponds to σ ≈ 0. Hence, the smaller σ, the larger the detection delay,
if p is fixed. In practice however, one would not observe standard deviations that are
close to zero. Lastly, the bullet at (p0, 370.4) marks the calibration point of the EWMA
p chart.
The graph in Figure 3 (d) corresponds directly to Krumbholz and Zöller (1995), Figure

1, where OC bands for various samples sizes n were drawn. Recall the simple relationship
ARL = 1/(1−OC) for Shewhart charts. From the shapes in Figure 3 we might conclude
that there is a considerable spread of the ARL for all considered values of p. In terms
of the out-of-control ARL level, the EWMA p chart with λ = 0.2 provides the most
balanced performance. Eventually, the EWMA p performance is much less sensitive to
the choice of λ than the one of the more popular EWMA X̄ charts.

12



Ta
bl
e
1:
A
R
L

fo
r
va
rio

us
va
lu
es

of
λ
an

d
ch
an

ge
s
in
µ
an

d
σ
.

λ
0.

05
µ

0
0.

5
1.

0
2.

0
σ

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

E
W

M
A
p

60
87

9
37

0.
4

54
.7

24
.3

12
25

84
.0

30
.3

17
.3

36
.3

18
.8

12
.3

9.
03

4.
04

3.
49

3.
11

2.
84

E
W

M
A
p
,µ

on
ly

27
86

37
0.

4
11

7
59

.6
27

.3
22

.2
18

.6
15

.8
5.

60
5.

36
5.

13
4.

92
1.

36
1.

39
1.

42
1.

44
E

W
M

A
X̄

73
3

37
0.

4
22

2
14

9
9.

38
9.

41
9.

43
9.

45
4.

43
4.

45
4.

47
4.

49
2.

27
2.

30
2.

31
2.

33
E

W
M

A
X̄

-S
2

16
86

37
0.

4
54

.3
21

.4
10

.6
10

.6
10

.4
9.

68
4.

90
4.

92
4.

93
4.

91
2.

55
2.

55
2.

55
2.

55
E

W
M

A
X̄

-S
2

(t
w

o)
71

.1
37

0.
4

78
.6

27
.5

10
.6

10
.6

10
.6

10
.1

4.
90

4.
92

4.
93

4.
94

2.
54

2.
55

2.
55

2.
55

E
W

M
A
p

(a
lt

)
11

35
89

37
0.

4
43

.4
17

.8
44

0
53

.8
22

.8
13

.6
27

.6
17

.3
12

.3
9.

28
8.

37
7.

22
6.

28
5.

50

λ
0.

1
µ

0
0.

5
1.

0
2.

0
σ

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

E
W

M
A
p

16
94

2
37

0.
4

54
.0

21
.0

97
9

86
.6

27
.0

14
.2

33
.4

15
.6

9.
76

7.
02

3.
10

2.
69

2.
40

2.
20

E
W

M
A
p
,µ

on
ly

19
58

37
0.

4
12

2
58

.4
24

.9
19

.3
15

.6
13

.1
4.

33
4.

17
4.

03
3.

90
1.

18
1.

21
1.

24
1.

27
E

W
M

A
X̄

84
6

37
0.

4
20

1
12

5
8.

39
8.

38
8.

37
8.

34
3.

69
3.

71
3.

73
3.

75
2.

00
2.

00
2.

00
2.

00
E

W
M

A
X̄

-S
2

19
29

37
0.

4
61

.4
22

.0
9.

50
9.

44
9.

17
8.

42
4.

04
4.

06
4.

07
4.

04
2.

07
2.

09
2.

10
2.

11
E

W
M

A
X̄

-S
2

(t
w

o)
87

.2
37

0.
4

99
.6

30
.5

9.
46

9.
46

9.
33

8.
85

4.
04

4.
06

4.
08

4.
08

2.
07

2.
09

2.
10

2.
12

E
W

M
A
p

(a
lt

)
41

71
37

0.
4

48
.8

18
.3

48
2

58
.2

22
.0

12
.5

24
.4

14
.4

10
.1

7.
65

6.
12

5.
34

4.
70

4.
18

λ
0.

2
µ

0
0.

5
1.

0
2.

0
σ

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

E
W

M
A
p

68
36

37
0.

4
61

.8
21

.6
79

8
98

.8
28

.8
13

.7
36

.5
15

.2
8.

69
6.

15
2.

60
2.

26
2.

03
1.

86
E

W
M

A
p
,µ

on
ly

15
16

37
0.

4
13

4
64

.2
29

.1
20

.6
15

.7
12

.7
3.

78
3.

65
3.

54
3.

43
1.

10
1.

13
1.

15
1.

18
E

W
M

A
X̄

97
0

37
0.

4
18

2
10

6
8.

30
8.

14
7.

98
7.

83
3.

12
3.

15
3.

17
3.

19
1.

63
1.

62
1.

61
1.

61
E

W
M

A
X̄

-S
2

20
67

37
0.

4
74

.1
25

.2
9.

71
9.

39
8.

86
7.

90
3.

41
3.

43
3.

44
3.

41
1.

78
1.

76
1.

75
1.

74
E

W
M

A
X̄

-S
2

(t
w

o)
12

0
37

0.
4

13
8

41
.7

9.
58

9.
41

9.
08

8.
44

3.
41

3.
43

3.
45

3.
45

1.
78

1.
76

1.
75

1.
74

E
W

M
A
p

(a
lt

)
84

19
37

0.
4

59
.1

20
.6

55
50

73
.4

24
.4

12
.6

25
.9

13
.4

8.
91

6.
61

4.
59

4.
02

3.
57

3.
21

λ
1.

0
µ

0
0.

5
1.

0
2.

0
σ

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

0.
9

1.
0

1.
1

1.
2

E
W

M
A
p

23
12

37
0.

4
99

.3
37

.6
59

5
14

0
48

.9
22

.3
60

.5
25

.0
13

.1
8.

07
2.

55
2.

13
1.

88
1.

70
E

W
M

A
p
,µ

on
ly

11
65

37
0.

4
15

7
80

.5
54

.8
33

.4
22

.9
17

.0
5.

05
4.

50
4.

10
3.

81
1.

05
1.

08
1.

10
1.

12
E

W
M

A
X̄

11
65

37
0.

4
15

7
80

.5
54

.8
33

.4
22

.9
17

.0
5.

05
4.

50
4.

10
3.

81
1.

05
1.

08
1.

10
1.

12
E

W
M

A
X̄

-S
2

17
48

37
0.

4
11

2
44

.8
96

.1
50

.6
29

.3
18

.0
7.

09
5.

97
5.

17
4.

52
1.

09
1.

11
1.

14
1.

17
E

W
M

A
X̄

-S
2

(t
w

o)
41

5
37

0.
4

22
2

12
2

81
.8

50
.6

33
.5

23
.9

7.
01

5.
97

5.
26

4.
76

1.
09

1.
11

1.
14

1.
17

E
W

M
A
p

(a
lt

)
23

15
37

0.
4

99
.2

37
.6

59
5

14
0

48
.8

22
.3

60
.6

25
.0

13
.1

8.
07

2.
55

2.
13

1.
88

1.
70

13



p

L
p

0 0.05 0.1 0.15

1
2

5
1
0

5
0

2
0
0

(a) λ = 0.1
p

L
p

0 0.05 0.1 0.15
1

2
5

1
0

5
0

2
0
0

(b) λ = 0.2

p

L
p

0 0.05 0.1 0.15

1
2

5
1
0

5
0

2
0
0

(c) λ = 0.5
p

L
p

0 0.05 0.1 0.15

1
2

5
1
0

5
0

2
0
0

(d) λ = 1

Figure 3: ARL as function of percentage defective p for four different λ values. The
λ = 0.1 contours are added to the other three plots as benchmark.
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6 Conclusions

Based on the basic idea of monitoring the percent defective p with a control chart for
variables (Krumbholz and Zöller, 1995), an EWMA p chart for variables was introduced
by Knoth and Steinmetz (2013) and studied for changing σ by Steinmetz (2014). The
present paper applies the EWMA p idea to a more realistic scenario. In contrast to
previous papers, the standard deviation is now in equal measure under the risk of change
like the mean. Therefore, both process parameters µ and σ are estimated and used for
the monitoring design.
For performance comparisons, the ARL concept is chosen. Here, the EWMA p chart is

compared to the ordinary EWMA X̄ chart, an EWMA X̄-S2 scheme with one-/two-sided
variance chart and a newly introduced alternative EWMA p chart.
It turns out that both the EWMA p chart and the alternative EWMA p chart provide

moderate ARL values in case of changing location and scale, even though the results of
Knoth and Steinmetz (2013); Steinmetz (2014) promised a higher applicability. For the
case of a separate change in the standard deviation σ, the two EWMA p charts perform
well while the alternative has slight performance advantages. As the change in the mean
µ becomes bigger, it is no surprise that the EWMA X̄ and the combined EWMA X̄-S2

schemes outperform the EWMA p approaches. Thus, for sole changes in µ, the EWMA
X̄ chart clearly excels the other schemes. Finally, the results are irrespective of the
chosen value of the EWMA weight parameter λ which leads to almost equal results
within the performance comparisons.
The bottom line is that the application of a single EWMA p chart (regular or alter-

native) monitoring the percent defective p = f(µ, σ) still pays off. Because of the minor
effort of applying a single chart in contrast to applying two separate charts monitoring
mean and standard deviation, the EWMA p concept turns out to be an option for well
established schemes.
In order to compute the ARL of the EWMA p chart, the collocation method is ex-

ploited. For the so-called alternative EWMA p chart, only Monte Carlo simulations
seemed to be feasible.
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A Numerics for calculating the ARL of EWMA p

Extending the Markov chain approach from Knoth and Steinmetz (2013) to the here
introduced EWMA p chart is straightforward. One simply utilizes the more complex
formula for F̂ (p), namely (2). The resulting performance including the usual accelerating
techniques like in Knoth and Steinmetz (2013) is illustrated in Figure 4. The changes
to the ARL integral equation are two-fold. Of course, the formula behind f̂(p), (3), is
more complex as well. And the original lower integral limit has to be replaced. Hence,
the ARL integral equation is given by:

L(z) = 1 +
∫ cE,p

(1−λ)z
L(x) 1

λ
fp̂

(
x− (1− λ)z

λ

)
dx , z ∈ [0, cE,p] .

Following the original collocation setup from Knoth and Steinmetz (2013), however, did
not provide a suitable numerical procedure. The awkward behavior of f̂(p) for p → 0
could not be counterbalanced by applying reasonable changes of variables. Nonetheless,
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using partial integration is the key to get an applicable procedure. The definite integrals
of the collocation procedure are replaced as follows (the notation is taken from Knoth
and Steinmetz, 2013):

N∑
j=1

cjT
∗
j (zi) = 1 +

N∑
j=1

cj

∫ cu

(1−λ)zi

T ∗j (x) 1
λ
fp̂

(
x− (1− λ)zi

λ

)
dx

= 1 + Fp̂

(
cE,p − (1− λ)zi

λ

)
−
∫ cE,p

(1−λ)zi

2
cE,p

t∗j(x)Fp̂
(
x− (1− λ)zi

λ

)
dx .

Thereby, T ∗j () denotes modified Chebyshev polynomials, the nodes zi are given by the
roots of the corresponding Chebyshev polynomial of order N + 1, and t∗j() marks the
derivative of T ∗j (). The latter can be determined easily by applying the rule tj(x) =
j/(1 − x2)

(
Tj−1(x) − xTj(x)

)
for j > 1 (plus t0(x) ≡ 0 and t1(x) ≡ 1). The versions

without “∗” correspond to the ordinary Chebyshev polynomials on [−1, 1]. It holds that
t∗j(z) = 2/cE,p tj−1(2z/cE,p− 1) for z ∈ [0, cE,p] and, of course, T ∗j (z) = Tj−1(2z/cE,p− 1)
(compare Knoth and Steinmetz, 2013) for j = 1, 2, . . . , N . The parameter N stands for
the number of Chebyshev polynomials involved in the approximation. The integrand of
the new integral behaves well, so that one obtains sufficiently high accuracy with already
20 quadrature nodes.
See the following Figure 4 for illustration of the competing numerical algorithms.

The EWMA smoothing parameter is set to λ = 0.2 which ends in cE,p = 0.044 655
yielding the common in-control ARL 370.4. Figure 4 displays numerical performance
profiles for the ordinary Markov chain approximation, two improvements – polynomial
extrapolation following Brook and Evans (1972) and the Richardson extrapolation due
to Hawkins (1992) – and collocation as described above. For increasing matrix dimension
N , the resulting approximation ARLN is given. The number N is chosen as a very basic
proxy for the computational amount aka time. Of course, the quadratures needed for
collocation increase the time considerably. However, for N = 15, which ensures already
high accuracy, the CPU time is less than 2 seconds on an Intel Core 2 Duo with 1.4GHz.
The Markov chain approximation needs about the same time for N = 64 with much
lower accuracy.
To validate the results, a Monte Carlo study with 109 replications was performed. It

provides 370.415 with a standard error 0.012. A corresponding stripe with width of four
times the standard errors is added to Figure 4 as well. The Monte Carlo result confirms
the collocation numbers.
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Figure 4: ARL approximation vs. matrix dimension N for the Markov chain method,
two accelerators, and the collocation procedure.
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