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Obtaining Superior Wind Power Predictions
from a Periodic and Heteroscedastic Wind
Power Prediction Tool

Daniel Ambach and Carsten Croonenbroeck

Abstract The Wind Power Prediction Tool (WPPT) has successfully been used for
accurate wind power forecasts in the short to medium term scenario (up to 12 hours
ahead). Since its development about a decade ago, a lot of additional stochastic
modeling has been applied to the interdependency of wind power and wind speed.
We improve the model in three ways: First, we replace the rather simple Fourier
series of the basic model by more general and flexible periodic Basis splines (B-
splines). Second, we model conditional heteroscedasticity by a threshold-GARCH
(TGARCH) model, one aspect that is entirely left out by the underlying model.
Third, we evaluate several distributional forms of the model’s error term. While the
original WPPT assumes gaussian errors only, we also investigate whether the errors
may follow a Student’s t-distribution as well as a skew t-distribution. In this article
we show that our periodic WPPT-CH model is able to improve forecasts’ accuracy
significantly, when compared to the plain WPPT model.

1 Introduction

Compensation systems for renewable energy like wind energy are pluralistic through
several countries. Many differences aside, accurate wind power forecasts are essen-
tial to the energy producer.
Research on wind power forecasting has been manifold. Lei et al. (2009) and, more
recently, Giebel et al. (2011) provide an overview. There are models based on the
physics of wind speed and power, models based on machine learning, wavelet mod-
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els and others. Simple, yet accurate stochastic models like the Wind Power Pre-
diction Tool (WPPT), as introduced by Nielsen et al. (2007), are quite successful.
WPPT is put to wide usage, especially in Denmark, the world leader in wind energy
harvesting, as Giebel et al. (2011) point out. However, WPPT disregards several
characteristics of the wind speed against wind power relationship. First, WPPT uses
a Fourier series to capture diurnal periodicity. This is a straightforward way to model
periodic effects, but replacing the Fourier terms by periodic B-spline functions in-
troduces more flexibility. The idea to use periodic B-splines is inspired by Harvey
and Koopman (1993), who use these functions to forecast the hourly electricity de-
mand. These functions enable the model to follow the diurnal periodic structure
independently from seasonal or yearly periodicity that may be present. Second, the
residuals of the WPPT show a strongly heteroscedastic behavior, which also seems
to be askew. We capture the skew (or: leveraged) heteroscedastic variance by mod-
eling the error term as a TGARCH process, as introduced by Rabemananjara and
Zakoı̈an (1993). Finally, the WPPT model’s assumption of gaussian errors may be
violated.1 As the residual’s density exhibits fat tails (particularly on its left-hand
side), we investigate alternative distributional assumptions. After all, we show that
our periodic WPPT-CH model generates forecasts that perform significantly more
accurate than those obtained by the plain WPPT model.
This article is organized as follows. In Section 2, we describe the analyzed data.
Section 3 introduces the underlying WPPT model and our new periodic wind power
prediction model with TGARCH effects. The results of the in-sample fit and out-of-
sample predictions are presented in 4 and section 5 provides a short conclusion.

2 Description of the Wind Power Data

The data used in this study are collected from a Fuhrländer FL MD 77 Turbine
in Germany. Due to a non-disclosure agreement, the specific location cannot be
revealed. Wind speed, wind direction and wind power is recorded at a frequency
of 10 minutes. This Turbine exhibits a power range of [0;1500] kW. The observed
time frame for the training data set spans from October 31, 2010 to August 19, 2011
(40000 observations).

3 A New Wind Power Forecasting Method

WPPT, as given by Nielsen et al. (2007), models wind power Pt as a dynamic regres-
sion approach. It includes lagged wind speed and diurnal periodicity as regressors.
The periodic behavior is captured by a Fourier series. Clearly, the important wind
speed forecasts are not deterministic. They may stem from numerical weather pre-

1 Shapiro-Wilk-Tests generally reject the hypothesis of gaussian WPPT errors.
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dictions (NWP) or could be predicted from statistical model approaches. In this arti-
cle, we use the recently developed predictions from a periodic ARFIMA-APARCH
model with time varying regressors, as discussed by Ambach and Schmid (2014).
As WPPT includes only two lags of wind speed in addition to periodicity as ex-
planatory variables, it is not flexible enough to capture important features of wind
power. The high-frequency data investigated here clearly show a strong presence
of autocorrelation, see Figure 1. The autoregressive model order should be extended
and include multiple lags. Furthermore, the variance structure shows heteroscedastic
disturbance, see Figure 2. Therefore, we model the conditional standard deviation
by a TGARCH model.
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Fig. 1 Time series of wind power Pt (first panel), histogram of wind power (second panel), ACF
and PACF for wind power (third and fourth panel), time frame October 31, 2010 to August 19,
2011.

Furthermore, we include wind direction as an additional explanatory variable, as
due to the Turbine’s uneven surroundings, local wind speed may depend on wind
direction. Wind power shows a correlation structure that suggests that it may very
well be dependent on wind direction. Figure 3 provides evidence on that assumption.
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Fig. 2 WPPT residuals ε̂t (first panel), histogram of ε̂t (second panel), ACF of ε̂t (third panel) and
ACF of |̂εt | (fourth panel), time frame October 31, 2010 to August 19, 2011.

Our new wind power prediction model uses B-splines to model the periodic struc-
ture, instead of the Fourier series used in WPPT. The considered periodic basis
functions are inspired by Harvey and Koopman (1993). The B-spline approach uses
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Fig. 3 Absolute number of
wind power observations and
the perceived wind directions.

local basis functions to provide more flexibility, especially when modeling time
series with nonstationary impacts such as wind power. After all, our new model
suggestion is

Pt = ϑ0 +
m

∑
j=1

θiPt− j +θ144Pt−144 +b1Wt +b2(Wt)
2 (1)

+sin(At)+ cos(At)+
K

∑
k=1

B̃k(t)+
o

∑
r=1

φrεt−r, (2)

where j ∈ 1, . . . ,m\{144}, Wt is the wind speed (in m/s) and At is the wind direction
(Azimuth). Wind direction is measured in degrees. To avoid numerical problems
resulting from that, we split the wind direction information into two components
cos(At) and sin(At). The autoregressive coefficients θ provide a stationary solution
if and only if P(z) = 1−(∑m

j θizi+θ144z144) 6= 0 for |z| ≤ 1. φ represents the moving
average components. We include MA coefficients to reduce the parameters of the
model and to capture the strongly persistent behavior of the dependent variable. The
essential model enhancements are the periodic B-splines B̃k(t). For our definition of
these splines, we follow Ziel and Steinert (2014). The basis functions of the wind
power series are given by

B̃k(t) = ∑
k∈Z

BkS,dκ
(t) = ∑

k∈Z
BkS,dκ

(t;κ (dκ ,T,D) ,D) , (3)

where κ is a set of equidistant knots, T depicts the central point of this set of knots,
S represents the periodicity and D is the degree of the spline. The distance of the
equidistant knots is given by dκ . As the data frequency is 10 minutes, the diurnal
periodicity for the wind power is S = 144. It is reasonable to choose the number of
included basis functions to be a common denominator of S. Thus, we decide to use
λ = 6 basis functions. Hence, we obtain a distance dκ of S/λ = 24. Finally, we are
able to iteratively define the complete set of basis functions B̃k(t) = B̃k−1(t− 24),
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where k ∈ {1, ...,5}. Besides, we choose D = 3, to get the popular cubic splines,
which are twice continuously differentiable. Furthermore, we have to remark that
∑

K
k=1 B̃k(t) is constant. Hence, the last component is omitted to avoid singularities.

Henceforth, we have to introduce the TGARCH model described by Rabemananjara
and Zakoı̈an (1993)

εt = σtηt , (4)

σt = α0 +
q

∑
l=1

αl(|εt−l |− γlεt−l)+
p

∑
i=1

βiσt−i, (5)

= α0 +
q

∑
l=1

αl(1− γl)ε
+
t −

q

∑
l=1

αl(1+ γl)ε
−
t +

p

∑
i=1

βiσt−i, (6)

where {ηt}t∈Z ∼ F is i.i.d. with E[ηt ] = 0 and Var[ηt ] = 1. Specifically, the er-
ror term {ηt} is assumed to be either standard normally distributed, normalized
t-distributed or skewed t-distributed. The TGARCH parameter γl are the asym-
metry parameters with |γl | ≤ 1 for l = 1, ...,q. This parameter depicts the asym-
metry within the conditional variance. Furthermore, α0 > 0, αl ≥ 0 ∀ l = 1, ...,q
and βi ≥ 0 ∀ i = 1, ..., p are the classical GARCH parameters. Rabemananjara and
Zakoı̈an (1993) discuss the existence of a stationary solution of the TGARCH pro-
cess. One definition of the skewed t-distribution is given by Fernandez and Steel
(1998). This approach combines two halves of a symmetric base distribution, which
are differently scaled. The subsequential equation provides the density function

fx(x) =
2ξ

(ξ 2 +1)
Γ
(

ν+1
2

)
Γ
(

ν

2

)√
π
√

νσ

[
1+

( x−µ

σ

)2

ν

(
1

ξ 2 I(x≥ µ)+ξ
2I(x < µ)

)]− ν+1
2

(7)

with ν degrees of freedom, I(·) the indicator function, expectation µ and variance
σ2 = ν/(ν−2). Moreover, ξ is the skewness parameter with ξ > 0. It reduces f to
the noncentral t-distribution if ξ = 1.

4 Comparison of the Forecasting Performance

We want to produce wind power forecasts that are significantly better than those
computed by previous models. In contrast to WPPT, which is estimated by a least-
squares approach, we use the maximum likelihood method for our periodic WPPT-
CH model. We apply our method to three different distributional assumptions. Fig-
ure 2 provides the histogram of the WPPT residual process, {ε̂t}. This histogram
and the Shapiro-Wilk-Test reject the assumption of normally distributed residuals.
Implying normality, the ACF of {ε̂t} and the ACF of {|̂εt |} suggest the presence of
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strong autocorrelation.
We use Akaike/Bayesian information criteria to select the best model for the resid-
uals {ε̂t}. Hence, for the autoregressive order, we choose m = 5 and o = 4 for the
moving average part. Moreover, for the TGARCH model, we choose q = 2 and
p = 4. For a comparison of the underlying distribution, we choose the same model
order for each model. Figure 4 provides ACF of ε̂t and |̂εt |. This figure depicts a
clear model improvement over normality. A huge amount of autocorrelation van-
ishes. The Ljung-Box-Test supports the assumption of no remaining autocorrelation
for each distribution. Furthermore, we use the Kolmogorow-Smirnow-test to test
for the underlying distribution. Only the assumption of the skew t-distribution is not
rejected.
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Fig. 4 Histogram of ε̂t (first column), ACF of ε̂t (second column) and ACF of |̂εt | (third column),
time frame October 31, 2010 to August 19, 2011 for the p-WPPT-CH and all distributions.



Periodic and Heteroscedastic Wind Power Prediction Tool 7

Regarding the in-sample fit, we conclude that the periodic WPPT-CH with skew
t-distributed residuals provides the best fit. Therefore, we expect that this model out-
performs the other models concerning the out-of-sample forecasts. We use the first
40000 observations as a training data set. The following week from August 19, 2011
to August 26, 2011 is used for out-of-sample forecasts. Here, we consider forecasts
up to a maximum of half a day. Using a rolling window technique, we re-estimate
each model for each forecast with a part of the information set available at the period
t, namely Pt−10000+1, ...,Pt . Subsequently, we derive P̂t+τ|t , where τ ∈ {1, ...,72}.
This procedure is repeated 1.000 times. We evaluate the out-of-sample forecasts for
the classical WPPT and the periodic WPPT-CH model with normally, t-distributed
and skew t-distributed errors. Besides, we take the persistence predictor P̂t+τ = Pt
and an AR(p) model as benchmark. Table 1 presents aggregated root mean square
errors (RMSE)2 for all models and forecasting horizons of τ ∈ {1,18,36,72}. The
best (smallest) values are bolded.

Table 1 RMSE for all models, time frame August 19, 2011 to August 26, 2011, 10 minutes, 3
hours, 6 hours and 12 hours ahead.

1 step 18 steps 36 steps 72 steps

Persistence 110.77 258.04 281.11 282.45
AR 112.08 207.38 213.11 204.18
WPPT 101.97 208.48 211.41 205.93
pWPPT-CH-n 102.53 202.89 206.85 204.60
pWPPT-CH-t 102.85 204.10 208.05 204.58
pWPPT-CH-st 102.04 203.60 207.61 205.06

In almost all cases, the periodic WPPT-CH model provides the lowest forecasting
errors. Figure 5 visualizes the RMSE inflation paths of the models by forecasting
horizons. The Figure emphasizes the findings presented in Table 1.3 Thus, we con-
clude that the best in-sample model also provides the best predictions.

5 Conclusion

We provide a new class of models that replace the Fourier series utilized by WPPT
by more appropriate and more flexible periodic B-splines. Beyond, we capture con-
ditional heteroscedasticity by modeling the error term as a TGARCH process. Fi-
nally, different error distributions are used. The skew t-distribution seems to capture
the residuals’ empirical properties quite better than the normal distribution. Our

2 We also calculate MAE. Results are quite similar and omitted here to conserve space. Tables and
Figures are available upon request.
3 For lucidity, the Figure depicts only the worst (persistence), best (pWPPT-CH-st) and the WPPT
benchmark model. All other curves lie inside the spanned range.
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Fig. 5 RMSE for all models
and all forecasting horizons,
time frame August 19, 2011
to August 26, 2011.
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models improve the in-sample features quite well, when compared to the classical
WPPT model. Clearly, there are further improvements possible, for example, using
a heteroscedastic multivariate periodic model. Nevertheless, the new wind power
prediction model derived here does improve forecasts over WPPT already.
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