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1 Introduction

Accurate medium-term forecasts (one to 36 hours ahead) are crucial in the wind
energy industry for all market participants. Xiaohong et al. (2000) argue that
power producers as well as power distributors (energy traders) require reliable
forecasts to achieve market clearing and efficient pricing in the power markets.
Transmission system operators (TSOs) are also in need of accurate forecasts of
power production since they have to manage the network load, as Hemmingsson
et al. (2006) point out.
This paper presents a forecasting model that focuses on the non-linear relation-
ship between wind speed and wind power production, called the power curve
as described by, for example, Burton et al. (2011). We utilize a distinct set
of explanatory variables and observe the relationship as a two-sided censored
set of data. Therefore, our model uses a piece of important additional ex-ante
available information: The power range of the turbine(s) that determines the
two censoring points. Our model returns an efficient and unbiased forecast of
wind power production that is more precise than the models currently used.
It should be emphasized that the model mainly aims at running at a turbine-
specific level but can also be used in a more macro-oriented perspective WLOG;
for example, at a wind park level including several turbines.
The paper is structured as follows: Section 2 presents a short overview of exist-
ing models and briefly describes how our model generalizes the idea on which
one of these models is based. Section 3 shows how we estimate our model in de-
tail. Section 4 sheds light on in-sample and out-of-sample forecasting precision
in comparison, discusses goodness of fit, evaluates censoring forecasting power,
and puts emphasis on the financial aspect of forecasting precision. Section 5
concludes.

2 Overview of Prevailing Models

In the comparably short history of wind power forecasting, basically three
branches of methods have emerged:
1. Artificial Neural Network (ANN)-based methods. An early work is that of
Beyer et al. (1994), which led to WPMS (Wind Power Management System),
introduced by Ernst and Rohrig (2002). One of the main problems of these
models is overfitting, which is being addressed by automatized specification
finding as described by Jursa and Rohrig (2008). Similarly, Sánchez (2008)
combines several ANN-based forecasting models to find the best forecast at
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any one time.
2. Physics-based models. One of the first models based on this approach was in-
troduced by Landberg (1999). The model is still being maintained and is called
Prediktor, a commercial software solution. An overview of other developments
based on the physics idea is presented by Lange and Focken (2006). Current
contributions to Prediktor are being published irregularly in the overview re-
ports by the project ANEMOS.plus. The most recent issue has been released
by Giebel et al. (2011). However, these models depend on high-resolution local
weather data,1 so computation impact and data volume handled are compara-
bly enormous if a forecast at a turbine-specific level is desired.
3. Methods based on stochastic modeling. Nielsen et al. (1999) capture the di-
urnal periodic compound of wind power production. The resulting model was
called WPPT2 (Wind Power Prediction Tool, second version). In 2002, WPPT
and Prediktor formed the project “Zephyr”, trying to combine the advantages
of both approaches. Zephyr is still being maintained, and current developments
are reported by Giebel et al. (2011). Besides the cooperation with Zephyr, both
Prediktor and WPPT are also updated separately. WPPT has been updated to
a conditional parametric version, called WPPT4 by Nielsen et al. (2002). The
most recent work on WPPT family models is reported by Nielsen et al. (2007).
WPPT models find a broad basis of usage in Denmark, the worldwide leading
country of wind power production.
However, more recent developments aim at taking more of the “stylized facts”
of the data into account. Pinson (2012) exploits both-sided censoring in the
data. Furthermore, he utilizes wind direction as an important explanatory vari-
able and uses it for data-driven parametrization of an autoregressive model that
produces precise forecasts in a very short time frame. We also take the data’s
both-sided censored structure into account and utilize wind direction, but do
not set up an autoregressive model. Instead, we use our modeling structure
to generalize WPPT and use that to calculate not short-term but medium-
term forecasts that are very important in day-to-day electricity trading. As a
by-product, our method provides a classifier that returns probability informa-
tion on future censoring, a piece of information that can be very valuable to
practitioners.
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Figure 1. Example of a turbine’s typical empirical power curve, i.e. the non-linear relationship
between wind speed and wind power generated, Turbine B, time frame Oct. 01st,
2007 to Sept. 30th, 2009.

Our Model Suggestion

We focus on the interdependency of wind power and wind speed, the so-called
power curve. Figure 1 presents an example of a turbine coded “Turbine B”.
Turbines A to H are all situated at specific locations in Germany that we cannot
reveal, which is why we code the turbines “A” to “H”. The interdependency
exhibits the following properties, sometimes referred to as “stylized facts” of
wind power production: The curve is non-linear, shows a sigmoidal shape, and
is both-sided censored (lower censoring point at 0 kW, upper censoring point
at 2,000 kW, which is the maximum power output of the turbines in our data
set). Furthermore, there are hints suggesting conditional heteroscedasticity,
i.e. a time-dependent volatility structure.
Wind power production possesses a diurnal periodic effect: The power
production level of a certain time of day is highly correlated with the power
production level of the same time one day earlier. WPPT addresses this
interday persistence by means of a set of sine and cosine transformations. In
addition to these transformations, WPPT uses lags of wind power as well as
wind speed and the square of wind speed (due to the non-linear relationship)
as the only explanatory variables in an overall linear modeling approach.
According to this, our model generalizes the WPPT idea regarding two major
1Typically, WAsP (Wind Atlas Analysis and Application Program) data is used.
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aspects: First, our model takes the two-sided censoring into account, so it is a
non-linear model. Second, we include wind direction as an additional explana-
tory variable. Wind comes from several directions. The relative frequencies of
directions are far from being uniformly distributed, as Figure 2 shows: For the
turbine investigated, wind seems to come from west-southwestern directions,
mostly. Additionally, the correlation between wind power and wind speed
seems to be dependent on wind direction. Figure 3 presents the correlation
coefficients between wind power and wind speed conditioned on wind direction.
It suggests that the correlation very much depends on wind direction. An
explanation can be wind park-specific wake effects (shadowing), as analyzed
by, e.g., González-Longatt et al. (2012). The four panels in Figure 4 show
the distribution of wind speed by wind direction, overlain by the respective
normal distribution densities of each direction’s mean and standard deviation.
While wind speeds from northern and eastern directions are rather mesokurtic,
those from southern (weakly) and western (strongly) directions are leptokurtic.
Figure 5 finally gives an example of a power curve including wind direction
(azimuth) as a static 3D plot. It can be seen that wind direction fits into the
dependency structure quite well. In a multivariate regression approach wind
direction regularly proves to be a highly significant explanatory variable.

3 The Generalized WPPT Model

Forecasting wind power production is a two-stage process: First, the explana-
tory variables need to be forecasted, i.e. wind speed and wind direction. In
real world applications, for example by practitioners in the industry (e.g. wind
park operators), these data are typically purchased from an external source.
There is a variety of services providing meteorology-based wind forecasts, for
example WAsP, HIRLAM, or DWD. However, as these services are expensive
(especially when data are required at a high frequency or at a high spacial
resolution), a cost saving approach would be to perform univariate forecasts
purely based on ARMA family stochastic processes.
Using ARMA models to forecast wind speed is well established in the literature,
e.g. Giebel et al. (2011). Beblo and Schmid (2011) present evidence that the
generalized ARFIMA(p, d, q) model (fractionally integrated ARMA) is able to
capture the typical empirical properties of wind speed data quite well. They
find best performance when choosing p = q = 3 and d around 0.4. However,
Hyndman and Khandakar (2008) provide a flexible implementation of the (in
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Figure 2. Absolute number of observations in several wind direction bins. Perceived wind
directions at a turbine are not uniformly distributed. In this example, wind rarely
comes from northern directions, Turbine B, time frame Oct. 01st, 2007 to Sept.
30th, 2009.
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Figure 3. Correlation coefficients between wind power and wind speed, by wind direction,
Turbine B, time frame Oct. 01st, 2007 to Sept. 30th, 2009. The curve consists of
18 azimuth segments, each 20 degrees “wide”. The dashed red curves denote a 95%
confidence band.

Figure 4. Histograms of wind speeds by wind direction, Turbine B, time frame Oct. 01st,
2007 to Sept. 30th, 2009. Red curves denote normal distribution densities at each
direction’s mean and standard deviation.
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Figure 5. Empirical Power Curve, visualization extended by wind direction (azimuth), Turbine
B, time frame Oct. 01st, 2007 to Sept. 30th, 2009. Identical colors denote identical
“heights”, i.e. identical power levels.

some way generalized) approach of Box and Jenkins (1970) to find proper
specifications. As an example of the rather good forecasting performance,
Figure 6 presents actual wind speeds vs. forecasts 12 hours ahead in a time
frame of roughly eight weeks. ME = −0.0639 m/s, which is only 2.003 · 10−4%
of the total sum of errors. Analogously, wind direction forecasts imply an ME

of 2.4909 degrees, 1.984 · 10−4% of the total sum. Figure 7 shows a scatter plot
of actual and forecasted wind speeds against each other. The blue line denotes
an ideal 45◦ line, while the red line symbolizes the bivariate regression line.
Although the lines look very much alike, a Wald test for ideal pairwise 1:1 fit
of actual vs. forecasted wind speeds (intercept = 0, slope = 1) is rejected at
an F-value of 62.9.
After all, we use this flexible framework to forecast wind speed data as an input
for the actual wind power forecasting model. For the real world practitioner
who chooses not to buy meteorology-based forecasts, the ARFIMA method
is fast enough for real time forecasting, and the precision of the results is
comparable to meteorology-based forecasts.
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Figure 6. ARFIMA(2, 0.4, 5 )-based wind speed forcasts, actual vs. fitted in an eight week
time frame of Jan. 07th, 2008 to Feb. 29th, 2008, 72 steps (12 hours) ahead, Turbine
B.
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Figure 7. Actual vs. forecasted wind speeds. The blue line is an ideal 45◦ line, the red is the
actual OLS line. Turbine B, time frame Oct. 01st, 2007 to Sept. 30th, 2009.
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Censored Regression

As mentioned in section 2, one of the ways in which our model (henceforth
“GWPPT”, Generalized WPPT) generalizes the idea of WPPT is that it makes
use of a piece of additional ex ante known information: The fact that produced
power lies inside predetermined boundaries. We assume that the data investi-
gated lie within an interval of pt ∈ [l, u] kW ∀ t per turbine, where pt is the
power produced at time t.
As the data are two-sided censored we impose a censored regression model (a
generalized Probit model by Rosett and Nelson, 1975) as estimator for the fore-
casting procedure. The model imposes the following structure on wind energy
production:

p∗t = µ(xt) + εt, (1)

where xt is a vector of explanatory variables, µ is an assumed linear function of
xt, and εt is an assumed Gaussian error term. For WPPT, it is simply assumed
that pt = p∗t , whereas GWPPT generalizes that idea and imposes a censored
data structure, so that

pt =


l, p∗t ≤ l

p∗t , p∗t ∈ (l, u)

u, p∗t ≥ u.

(2)

l and u are the lower and upper censoring points and

µ(xt) =
m∑

j=1
βjxt,j (3)

with xt = x1,t, . . . , xm,t and x1,t = 1 ∀ t = 1, . . . , T .

Estimation of the parameters is performed via a combined Least-Squares-
/Maximum-Likelihood-Approach.2 Chung and Goldberger (1984) point out
that (generalized) Probit models provide asymptotically unbiased estimates,
even in the presence of heteroscedasticity. However, Arabmazar and Schmidt
(1981) show that censored regression is prone to inconsistency when the data
investigated is heteroscedastic and a comparably large fraction of the data is
2Another method for estimation is, for instance, the Markov Chain Monte Carlo method
(MCMC) described by Gill (2008).
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censored (about half of the observations or more). Still, the magnitude of the
inconsistency is smaller than for a simply truncated model. Also, far fewer
than half of the observations need to be censored for GWPPT, so we assume
the inconsistency not to be too severe. Nevertheless, future models need to
take heteroscedasticity into account to achieve guaranteed consistent estimates.

Specification

As the model’s specification we basically put wind direction into the WPPT
model as an additional variable and then run it through a censored regression
estimator. In lag notation (using k as a lag parameter, i.e. the forecasting
horizon is k steps ahead), the specification is defined as

p∗t = m+a1·pt−k+a2·pt−(k+1)+b1·wt|t−k+b2·(wt|t−k)2+c1·vt|t−k+dc
1·cos

(2πdt

144

)
+ dc

2 · cos
(4πdt

144

)
+ ds

1 · sin
(2πdt

144

)
+ ds

2 · sin
(4πdt

144

)
+ εt, (4)

where p∗t is power produced at time t, wt|t−k is wind speed at time t given at
time t− k, vt is wind direction at time t, and dt is time of day for observation
t. The right-hand side of this model equation represents the function µ(·) in
equation (1). (G)WPPT uses the Fourier series (the four sine and cosine terms)
to control for daytime. In that way, it captures the diurnal periodic compound
of wind power production mentioned above: Since our data is based on an in-
terval of ten minutes, there are 144 obs. per day, so the sine and cosine terms
are modulated to oscillate once per day.
Contrary to the original WPPT specification, we set parameters a1 and a2 to
zero, i.e. we do not utilize the lagged dependent variable in the specification.
WPPT was developed to produce short-term horizon forecasts. That model
benefits from an included lagged dependent variable because it helps to capture
persistency effects in the short run. In our medium-term scenario, however, we
discovered how to attain better results not taking the lagged dependent variable
into account, especially if the forecasting horizon extends up to several hours.
To smoothen the parametric conditions between short- and medium-term sce-
narios, Tastu et al. (2010) show how to condition a model’s parametrization on
the forecasting horizon.
For the WPPT model, the above completes the forecasting process, since for
WPPT, pt = p∗t . However, a real world operator does know the turbine’s
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power range. Since WPPT frequently returns p∗t < l or p∗t > u, those fore-
casts are assumed to be “flattened” to limit the extent of forecasting errors:
pt = l ∀ p∗t < l and pt = u ∀ p∗t > u.
For GWPPT instead, we estimate the conditional mean of pt according to p∗t
as modeled by equation (2). After estimating the parameters of the GWPPT
model we make use of the assumption of normally distributed errors and extract
the forecasted power production as the conditional mean p̂t (xt) := E [p∗t |xt],
according to equation (1). Using this framework we obtain the forecasted power
level as

p̂t = (Φ(f2)− Φ(f1)) · p∗t + (φ(f1)− φ(f2)) · σ̂ + u · (1− Φ(f2)), (5)

where

f1 = l − p∗t
σ̂

, (6)

f2 = u− p∗t
σ̂

, (7)

and φ(·) and Φ(·) denote normal PDF (Probability Density Function) and CDF
(Cumulative Distribution Function), respectively.
As a by-product of the conditional mean function (5), we obtain CDF and
PDF for upper and lower censoring, respectively. Φ(f1) should be close to
one whenever actual power output data is rather small, i.e. the forecasting
algorithm predicts lower censoring. Φ(f2) should be close to zero in those cases
and vice versa. As an aggregated and more intuitive measure, we calculate a
standardized sum of these indicators and subtract it from one:

C = 1− Φ(f1) + Φ(f2)
2 . (8)

Therefore, the resulting “probability” measure should be close to one whenever
the algorithm forecasts upper censoring and close to zero when lower censoring
is forecasted. When no censoring is forecasted, the measure should be close to
0.5.
This measure (or, alternatively, a PDF-based measure) can be extended to serve
as a censoring classifier which can be used as a censoring forecaster. The classi-
fier can be applied to upper censoring or lower censoring separately, if needed.
For example, whenever C from equation (8) exceeds a given threshold (e.g.,
0.9), it can be assumed that the given forecast will be censored at the upper
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bound. This way, a very simple classifier can forecast the class of censoring, and
equation (8) provides the respective probability. We investigate the predictive
power of this classifier in the text below and find that it is surprisingly precise,
given its simplicity.

4 GWPPT in Practice

As a common measure for the comparison of wind power production forecasts,
Giebel et al. (2011) suggest using standardized Root Mean Squared Errors
(RMSE), henceforth called sRMSE. The method is widely accepted in the lit-
erature, so we use sRMSE to compare GWPPT to WPPT and to a naïve
(p̂t = pt−k) forecast, which is a common benchmark in the literature (e.g.
Costa et al., 2008, or Giebel et al., 2011). For small k, the naïve forecaster is
known to be hard to outperform because of the high degree of persistence in
the actual power levels. Pinson (2012) argues:

...the persistence benchmark indeed seems competitive: The more
advanced approaches only propose overall improvements up to 5%.

Furthermore, it is rather common to compare a forecast to the theoretical
power curve the turbine producer provides. The International Electrotechnical
Commission (IEC) obliges any producer to publish a characteristic profile of
the system. In our case, the system is the Vestas V90-2MW turbine. The
theoretical power curve is plotted in the product brochure3, and actual values
can be taken from the technical description. 4 However, as for our turbines,
this curve seems to be systematically biased since it underestimates the power
produced for almost all wind speeds, as the example of Figure 8 reveals. As
can be seen, the theoretical profile hardly provides a good description of actual
observations. Reasons might be above-average air densities at the turbine’s
location or just a prudent estimation of the theoretical power output. In any
case, this curve will obviously not be a good forecaster, so we do not take this
benchmark into further consideration.
As for the data we have, pt ∈ [0; 2, 000] kW ∀ t per turbine, since 2,000 kW
(or 2 MW) is the maximum power output of Vestas V90-2MW turbines. For
all turbines to which we have access, sensor data in the time window October
3Cf. http://nozebra.ipapercms.dk/Vestas/Communication/Productbrochure/
2MWbrochure/2MWProductBrochure/

4Cf. www.horizonwindfarms.com/northeast-region/documents/under-dev/arkwright/
Exhibit7_GeneralSpecifications.pdf
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Figure 8. Theoretical Power Curve as given by the International Electrotechnical Commission,
reported by turbine producer Vestas (Turbine B), Turbine B, time frame Oct. 01st,
2007 to Sept. 30th, 2009.

1st 2007 to September 30th 2009, i.e. for two full years, have been observed.
Observations are reported at a ten-minute frequency, so we have 105,264
observations of variables such as wind speed, wind direction, actually produced
power and others.

In-Sample Performance

As a preparation for the analysis of real world scenarios, we first analyze the
model’s in-sample performance, i.e. its behavior under actually observed con-
ditions. Therefore, we pick a representative, but shorter, time frame out of the
total sample and feed the forecasting model not estimated explanatory vari-
ables, but observed ones. All forecasts are calculated for a 12-hour-horizon, i.e.
72 steps ahead. If, in comparison to forecasts given estimated explanatory vari-
ables, GWPPT performs better than WPPT, we can switch to a more realistic
scenario and analyze the total data set out-of-sample. Additionally, given this
small “sandbox” framework, we analyze the model’s performance conditioning
on wind direction, which is our additional explanatory variable not utilized in
the WPPT benchmark model.
Figure 9 shows the power curve performance of the GWPPT vs. WPPT models
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Figure 9. WPPT and GWPPT performance in a power curve, actual vs. forecasted explana-
tory variables, Turbine A, time frame Jan. 07th, 2008 to Feb. 29th, 2008.

in a roughly eight-week time frame, using both actual and forecasted explana-
tory variables, respectively. Both GWPPT curves are comparably close by and
diverge from the data support area much less than the WPPT curves do (over-
estimation for 4-8 m/s, underestimation for 11-14 m/s). The same holds true
for estimations conditioned on wind direction. For example, Figure 10 presents
curves for eastern wind directions only. Table 1 presents RMSE, sRMSE, and
relative RMSE differences for several turbines, by wind direction. It provides
numerical evidence that WPPT is outperformed by GWPPT in-sample by far.
Table 2 provides numbers of observations in total, numbers of lower censoring
observations and numbers of upper censoring observations (and percentages,
respectively) per quadrant for these turbines, in-sample (and out-of-sample).
Results so far show that GWPPT performs a lot better than WPPT in-

sample, that wind direction matters, and also that GWPPT performs better
than WPPT when controlling for wind direction. Since everything else is identi-
cal in that case, the remaining improvement must be due to GWPPT censoring.
However, in-sample forecasting is not realistic. Out-of-sample improvements
are not as significant, but still very important, as table 3 shows. Again, ta-
ble 2 provides numbers of observations in total, numbers of lower censoring
observations, and numbers of upper censoring observations (and percentages,
respectively) per quadrant for these turbines, out-of-sample (and in-sample).
We will move on to a more realistic out-of-sample evaluation in the text below.
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Figure 10. WPPT and GWPPT performance in a power curve, actual vs. forecasted explana-
tory variables, eastern wind directions only, Turbine A, time frame Jan. 07th, 2008
to Feb. 29th, 2008.
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A (total) A (%) B (total) B (%) C (total) C (%)

North:
Total 1260 4064 2201
Lower censored 361 28.65% 416 10.24% 434 19.72%
Upper censored 0 0% 842 20.72% 12 0.55%
In-Sample
Lower censored 174 13.81% 425 10.46% 509 23.13%
Upper censored 0 0% 241 5.93% 0 0%
Out-of-Sample
Lower censored 124 9.84% 345 8.49% 272 12.36%
Upper censored 0 0% 333 8.19% 0 0%

East:
Total 3778 1503 1716
Lower censored 492 13.02% 78 5.19% 339 19.76%
Upper censored 309 8.18% 435 28.94% 39 2.27%
In-Sample
Lower censored 385 10.19% 83 5.52% 392 22.84%
Upper censored 148 3.92% 129 8.58% 2 0.12%
Out-of-Sample
Lower censored 182 4.82% 77 5.12% 406 23.66%
Upper censored 118 3.12% 108 7.19% 0 0%

South:
Total 1347 1241 1584
Lower censored 202 15.00% 607 48.91% 492 31.06%
Upper censored 126 9.35% 71 5.72% 2 0.13%
In-Sample
Lower censored 114 8.46% 610 49.15% 523 33.02%
Upper censored 71 5.27% 29 2.34% 0 0%
Out-of-Sample
Lower censored 98 7.28% 516 41.58% 565 35.67%
Upper censored 8 0.59% 2 0.16% 0 0%

West:
Total 1542 1118 2426
Lower censored 319 20.69% 322 28.80% 726 29.93%
Upper censored 14 0.91% 32 2.86% 0 0%
In-Sample
Lower censored 211 13.68% 409 36.58% 766 31.57%
Upper censored 2 0.13% 67 5.99% 0 0%
Out-of-Sample
Lower censored 229 14.85% 378 33.81% 503 20.73%
Upper censored 0 0% 44 3.94% 0 0%

Table 2. Numbers of total observations, numbers of lower censored observations and numbers
of upper censored observations (and percentages, respectively) per quadrant for tur-
bines A, B, and C, time frame Jan. 07th, 2008 to Feb. 29th, 2008. Actual, in-sample
GWPPT and out-of-sample GWPPT.

17



A
:R

M
SE

A
:s

R
M
SE

A
:r

el
.
R
M
SE

B
:R

M
SE

B
:s

R
M
SE

B
:r

el
.
R
M
SE

C
:R

M
SE

C
:s

R
M
SE

C
:r

el
.
R
M
SE

N
or
th
:

G
W

PP
T

36
5.
39

35
0.
18

27
.

71
4.
05

59
0.
35

70
.

61
7.
83

90
0.
30

89
.

W
PP

T
37

1.
82

85
0.
18

59
10

1.
76

11
%

71
0.
07

00
0.
35

50
99

.4
41

8%
60

4.
55

62
0.
30

22
97

.8
50

1%
Pe

rs
ist

en
ce

36
3.
36

67
0.
18

17
99

.4
45

3%
75

9.
11

76
0.
37

95
10

6.
31

07
%

62
5.
51

23
0.
31

28
10

1.
24

20
%

E
as
t:

G
W

PP
T

72
3.
68

64
0.
36

18
.

77
4.
83

92
0.
38

74
.

57
5.
32

44
0.
28

77
.

W
PP

T
71

2.
95

72
0.
35

65
98

.5
17

4%
75

9.
78

74
0.
37

99
98

.0
57

4%
57

6.
99

33
0.
28

85
10

0.
29

01
%

Pe
rs
ist

en
ce

74
7.
49

03
0.
37

37
10

3.
28

93
%

80
8.
23

65
0.
40

41
10

4.
31

02
%

60
3.
53

60
0.
30

18
10

4.
90

36
%

So
ut
h:

G
W

PP
T

71
6.
53

45
0.
35

83
.

56
6.
42

19
0.
28

32
.

43
0.
74

69
0.
21

54
.

W
PP

T
70

1.
98

20
0.
35

01
97

.9
69

0%
59

4.
09

12
0.
29

70
10

4.
88

49
%

44
7.
76

56
0.
22

39
10

3.
95

10
%

Pe
rs
ist

en
ce

79
3.
32

32
0.
39

67
11

0.
71

67
%

62
4.
12

50
0.
31

21
11

0.
18

73
%

42
8.
83

51
0.
21

44
99

.5
56

2%

W
es
t:

G
W

PP
T

33
8.
10

57
0.
16

90
.

21
0.
18

00
0.
10

51
.

43
5.
52

51
0.
21

78
.

W
PP

T
36

6.
70

44
0.
18

33
10

8.
45

85
%

26
4.
84

17
0.
13

24
12

6.
00

71
%

45
5.
42

64
0.
22

77
10

4.
56

95
%

Pe
rs
ist

en
ce

36
3.
84

12
0.
18

19
10

7.
61

17
%

27
3.
71

48
0.
13

69
13

0.
23

01
%

41
2.
40

97
0.
20

62
94

.6
92

5%

Ta
bl
e
3.

W
P
P
T

an
d
G
W

P
P
T

pe
rf
or
m
an

ce
at

a
fo
re
ca
st
ed

ex
pl
an

at
or
y
va
ria

bl
es

sc
en

ar
io

(o
ut
-o
f-s

am
pl
e)

fo
r
tu
rb
in
es

A
,
B
,
an

d
C
,
tim

e
fr
am

e
Ja

n.
07

th
,

20
08

to
Fe

b.
29

th
,2

00
8.

R
M
SE

=
R
oo

t
M
ea
n
Sq

ua
re
d
E
rr
or
,s
R
M
SE

=
st
an

da
rd
iz
ed

R
M
SE

,r
el
.
R
M
SE

=
re
la
tiv

e
in
cr
ea
se

of
R
M
SE

vs
.
R
M
SE

of
G
W

P
P
T
.

18



sRMSE Comparison - An Evaluation of Forecasting Precision

Since we have data at a ten-minute frequency and the most important fore-
casting horizons range from 12 to 36 hours ahead, we calculate out-of-sample
forecasts up to 216 steps (36 hours) ahead using a rolling window of fixed size
throughout the whole data set. Figure 11 presents the development of sRMSE
at turbine A between about 12 and 36 hours ahead. As can be seen, WPPT
clearly outperforms the persistence forecaster. Moreover, GWPPT performs
somewhat better than WPPT, i.e. sRMSE are lower for all forecasting hori-
zons. We double-check the robustness of these findings with turbines B to H,
and results are very similar. Turbines A to C are all located at one wind park,
turbines D to F are located at another park, and turbines G and H belong
to a third wind park. sRMSE plots are shown in Figures 12a to 13c. Table
4 presents numerical evidence of relative forecasting power improvement, i.e.
relative reduction in sRMSE from one forecaster to another.5 Panel A shows
that the GWPPT forecaster outperforms the persistence forecaster in most of
the cases, except for the 1 step forecasting horizon. In panel B it can be seen
that GWPPT severely improves forecasting performance (i.e. lower sRMSE)
over the plain WPPT model. Especially for turbines D to F, WPPT seems
to be prone to heavy censoring and therefore performs worse than persistence
even for longer forecasting horizons as can be seen in panel C. GWPPT can do
a lot better here.
Compared to WPPT, GWPPT improves forecasting precision by more than
five percentage points in most cases. While this may seem to be only a limi-
ted success, it should be kept in mind that in the competition of wind power
forecasting, many models (such as the rather sophisticated WPPT) are already
very mature and prove to be tough competitors.
Still, numerically small improvements in terms of sRMSE percentage points
usually result in quite substantial monetary benefits. Carl Hilger, Operations
Manager of Eltra (the antecessor of Energinet.dk), is cited by Giebel et al.
(2011) for this statement:

»If only we improved the quality of wind power forecasts with one
percentage point, we would have a profit of two million Danish
crowns.« Similar orders of magnitude are quoted infrequently by
other utilities or traders, but usually not for publication.

5For convenience, positive values mean “better” in this setting.
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Panel A: GWPPT vs. persistence

1 step 72 steps 144 steps 216 steps
Turbine A -1.7463% 5.4020% 5.7217% 5.4997%
Turbine B -2.2748% 3.6417% 3.9640% 3.5651%
Turbine C -0.7451% 3.0983% 1.2932% 0.4890%
Turbine D -15.9569% 5.4569% 3.3089% -0.5181%
Turbine E -16.7833% 4.3372% 2.6988% -0.3105%
Turbine F -16.2344% 5.3569% 3.3826% -0.3068%
Turbine G -4.9628% 2.9315% 3.7986% 3.8203%
Turbine H -2.0976% 5.1821% 5.0271% 3.7107%
Panel B: GWPPT vs. WPPT

1 step 72 steps 144 steps 216 steps
Turbine A -0.4729% 0.9508% 1.2832% 0.8249%
Turbine B -1.3476% 0.3625% -1.5940% -2.7703%
Turbine C 1.3202% -0.8390% -0.4717% -1.1052%
Turbine D 3.1559% 5.1436% 5.7490% 6.3705%
Turbine E 2.9162% 5.9046% 6.1230% 6.0821%
Turbine F 3.7082% 5.9356% 5.4203% 7.1821%
Turbine G -0.3587% 0.7765% -0.7307% -1.3308%
Turbine H 13.7785% 7.5781% 3.4280% 5.0408%
Panel C: WPPT vs. persistence

1 step 72 steps 144 steps 216 steps
Turbine A -1.2674% 4.4939% 4.4962% 4.7136%
Turbine B -0.9149% 3.2911% 5.4708% 6.1646%
Turbine C -2.0929% 3.9046% 1.7566% 1.5767%
Turbine D -19.7357% 0.3303% -2.5889% -7.3573%
Turbine E -20.2912% -1.6658% -3.6475% -6.8066%
Turbine F -20.7106% -0.6152% -2.1545% -8.0685%
Turbine G -4.5877% 2.1718% 4.4964% 5.0835%
Turbine H -18.4131% -2.5925% 1.6559% -1.4007%

Table 4. Relative Forecasting Power improvement by sRMSE. Panel A provides pairwise
comparisons of GWPPT vs. persistence forecasts for several forecasting horizons
(columns) and several example turbines (rows). Panel B does the same for pairwise
GWPPT vs. WPPT comparisons and panel C compares WPPT vs. persistence
forecasts. Positive values denote “better” forecasts, i.e. lower sRMSE. Estimation
sample spans from Oct. 01st, 2007 to Dec. 12th, 2008.
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Figure 11. Standardized RMSE profile for several forecasting horizons, persistence vs. WPPT
vs. GWPPT predictor, Turbine A, estimation sample spans from Oct. 01st, 2007
to Dec. 12th, 2008.
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We complement this statement by a model calculation and find that the
financial impact of an improvement of forecasting precision by a few percentage
points can be tremendous.

A Time Series Comparison

Figure 14 presents a comparison of actual power production against forecasted
production using WPPT and GWPPT, 72 steps (i.e. 12 hours) ahead on
turbine A. The time series plot consists of the first 6,000 obs. of the data set
(about 6 weeks) to make the effects visible in greater detail. Whenever actual
power is high, the blue WPPT curve is located below the red GWPPT curve
and vice versa and whenever actual power is low, the blue WPPT curve lies
above the red GWPPT curve. This behavior suggests that not respecting
censoring, as it is done for WPPT, leads to biasedness in the boundary areas.
Furthermore, there are several differences between WPPT and GWPPT in
addition to the censoring point areas. In the area of obs. 3,800, for example,
actual power experiences a drastic drop. WPPT follows that drop to a degree,
but in a far more restrained manner than the actual power drop turns out.
GWPPT, however, still does not follow the drop as drastically as the actual
power level, but more clearly than WPPT does. Another example of this
behavior can be seen in the area of obs. 4,400. Possible explanations for this
behavior can be the inclusion of wind direction as an additional explanatory
variable, but also the different slope of the estimator due to the censored
regression model.
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Figure 12. Standardized RMSEs, Turbines B to E, estimation sample spans from Oct. 01st,
2007 to Dec. 12th, 2008.
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Figure 13. Standardized RMSE, Turbines F to H, estimation sample spans from Oct. 01st,
2007 to Dec. 12th, 2008.
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1 step 72 steps 144 steps 216 steps

Correct Censoring 10.06% 4.49% 2.89% 2.33%
Correct non-Censoring 77.54% 71.28% 70.00% 69.70%
False Positive 0.40% 6.76% 8.25% 8.74%
False Negative 12.00% 17.47% 18.86% 19.23%

Sums 100.00% 100.00% 100.00% 100.00%

Table 5. False and correct censoring classification for several forecasting horizons (columns),
Turbine A, estimation sample spans from Oct. 01st, 2007 to Dec. 12th, 2008.

Evaluating Censoring Forecasts

As each single forecast returned by GWPPT may or may not be censored, there
can be

1. correct censoring (correct positive, i.e. a forecast is censored when it in
fact has to be censored [that is, actual power levels reach 2,000 or 0 kW
and so does the respective forecast]),

2. type one errors (false negative, i.e. not censored although actual power
levels reach 2,000 or 0 kW),

3. type two errors (false positive, i.e. censored although actual power levels
are within the [0; 2, 000] kW boundary), and

4. correct decisions not to censor (correct negative, i.e. not censored while
actual power levels are in fact within the [0; 2, 000] kW boundary).

Table 5 presents generic results for turbine A. As expected, the relative number
of aggregated false censoring classification increases when the forecasting
horizon increases. Still, the large magnitude of correct censoring decisions
emphasizes the importance of respecting the power range of the turbines while
forecasting.
As pointed out in section 3, a censoring forecaster comes along with the
methodology. Equation 8 can be used as a measure of censoring probability.
Figure 15 shows actual data upper censoring and such forecasts that are
classified as upper censoring in comparison. In this figure, one means “upper
censoring”, and zero means “no upper censoring”. 81% of all upper censoring
classifications are ex-post correctly classified. For lower censoring, even 94.2%
of all classifications are correct. For total censoring (lower and upper), 87.6%
of all censoring forecasts are correct, which is in accordance with the findings
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Figure 15. Upper censoring forecasts. Values of one refer to upper censoring forecasts, values
of zero refer to no forecasted upper censoring. Actual data upper censoring is
displayed for reference (upper panel). Turbine B, time frame Oct. 01st, 2007 to
Nov. 13th, 2007. Green lines denote correct upper censoring, red lines denote false
classification of upper censoring.

presented in table 5.
As a consequence, we conclude that the method introduced provides a classifier
for lower and upper censoring which forecasts censoring rather precisely. If
only censoring is to be forecasted (either “censoring: yes/no” or censoring
probability), but not power itself, the classifier which comes as a by-product of
our method can be applied.

A Peek on Goodness of Fit

Good fit is not a goal of this paper. A virtually perfectly fitting curve can be
found easily, e.g. by using simple kernel smoothing methodology. However,
as overfitting usually leads to bad forecasting performance, fitting is not the
subject here, but forecasting performance is. Still, we briefly look at the
estimators’ goodness of fit.
Figure 16 presents simplified (i.e. bivariate), yet typical, visualizations of
WPPT and GWPPT estimators in comparison. First of all, the blue WPPT
estimator (R2 = 0.8711) comes with very wide confidence bands, represented
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by the dashed blue lines.6 Especially the right-hand side of the confidence
interval seems to be unnecessarily wide, most likely caused by outliers (as
compared to the most concentrated support area of the data, i.e. the wide
“band” of observations) at the topmost left area and the fact that there are
many observations located to the right of the estimator in the area around 4 to
8 m/s. The red GWPPT estimator (Pseudo-R2 = 0.9609), however, presents
rather narrow confidence bands. Bands are asymmetric and get very close to
the actual estimator in the inner area, i.e. between about 5 and 10 m/s. As
expected, the distance between right-hand side confidence band and estimator
becomes zero where the estimator follows the lower censoring of the data.
The left-hand side confidence band does just the same when there is upper
censoring. Due to the conditional mean being used as described in section 3,
the GWPPT curve is non-linear, which makes a comparably good fit quite
possible. However, the most important advantage of censored regression over a
purely linear model is that taking censoring into account results in a “steeper”
slope of the curve, enabling it to fit the data much better than the linear model
can.

Financial Impact

Holttinen (2005) gives insight into the Dutch electricity market and the asym-
metry of the loss function of wind power trading. To sum up, Holttinen states
that in his somewhat simplified example, power sold by contract in advance is
traded for around PC = 100 EUR/MWh. Any additional MWh delivered be-
yond the contracted amount returns a revenue of PS = 16 EUR/MWh (e.g. at
the spot market). Any MWh contracted but not delivered needs to be repayed
in addition to a contract penalty of PP = 20 EUR. Therefore, the opportunity
loss of a produced but not contracted MWh is 84 EUR, while the loss of a
contracted but not delivered MWh is 20 EUR. In the end, the economic loss of
forecasting impreciseness is

Lt (PC , PS , PP , et) =

 (PC − PS) · et

PP · |et|

et ≥ 0

et < 0,
(9)

6Confidence bands stem from parametric bootstrap methodology with M = 19 simulation
rounds.
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Figure 16. WPPT versus GWPPT estimator fit. The (blue) linear WPPT model fits the data
rather badly, while the non-linear GWPPT model (red) provides a better fit as well
as more narrow and asymmetric confidence bands (dashed, respectively), Turbine
B, time frame Oct. 01st, 2007 to Sept. 30th, 2009.
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Turbine Monetary gain Percentaged monetary gain

Turbine A 282,198.68 E 13.12%
Turbine B 301,475.47 E 12.52%
Turbine C 247,510.60 E 8.96%

Table 6. Absolute and relative monetary gain of GWPPT over WPPT for 72 steps ahead
forecasts.

where et is the respective forecasting error. This model depicts a simplified
(since static and linear) asymmetric loss function as also found in the NASDAQ
OMX Commodities financial energy market (formerly Nord Pool). In practice,
numbers may vary, but the example given is still a good approximation of
average market conditions.
We run GWPPT as well as WPPT errors through that model and calculate
the monetary losses of forecasters. In that way, we quantify the financial
impact of using GWPPT instead of (hypothetically) using WPPT, i.e. we seek
to find the cost reduction of increased forecast precision by using GWPPT.
For the turbines located at one wind park, we calculate the monetary cost
of impreciseness of WPPT and GWPPT, the difference is the monetary gain
of GWPPT over WPPT. Table 6 presents the results over the whole span
of observations, i.e. two full years, and at a forecasting horizon of 72 steps
ahead. Since each turbine can gain around 250,000 euros (on average) during
the two years of observation, it should be safe to say that applied to the whole
wind park consisting of ten of these identical turbines, the park could gain at
least an additional 1.25 million euros per year just by using GWPPT instead
of state-of-the-art forecaster WPPT. This number emphasizes the financial
impact of more precise forecasts even though the relative preciseness gain is
only a few percentage points, as argued before.

5 Conclusion

This paper introduced a wind power forecasting model (GWPPT), which usu-
ally operates at a turbine-specific level, but can also be applied to wind parks
and whole regions of countries. The method generalizes the idea behind a well
established forecasting approach (WPPT) in two ways: It takes the two-sided
censoring of empirical data into account and also introduces wind direction as
an additional variable to the specification. We were able to show that GWPPT
outperforms the WPPT model significantly and suggest that practitioners add
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our generalizations to their modeling tools. Furthermore, we provide a censor-
ing classifier that comes as a by-product of our method. For the wind park
investigated we could show that using GWPPT instead of WPPT can increase
monetary profit by around 1.25 million euros a year, simply due to smaller
overall forecasting impreciseness.
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